Data ONTAP® 8.0 7-Mode File Access and Protocols Management Guide

NetApp, Inc. 495 East Java Drive Sunnyvale, CA 94089 USA Telephone: +1 (408) 822-6000

Fax: +1 (408) 822-4501 Support telephone: +1 (888) 4-NETAPP

Documentation comments: doccomments@netapp.com

Information Web: http://www.netapp.com

Part number: 210-04910_A0

Updated for Data ONTAP 8.0.1 on 11 November 2010

Contents

Copyright information	11
Trademark information	13
About this guide	15
Audience	15
Accessing Data ONTAP man pages	15
Where to enter commands	16
Keyboard and formatting conventions	17
Special messages	18
How to send your comments	18
Introduction to file access management	19
File protocols that Data ONTAP supports	19
How Data ONTAP controls access to files	19
Authentication-based restrictions	19
File-based restrictions	19
File access using NFS	21
Exporting or unexporting file system paths	21
Editing the /etc/exports file	22
Using the exportfs command	23
Enabling and disabling fencing of one or more NFS clients from one or more	
file system paths	26
Displaying the actual file system path for an exported file system path	27
Displaying the export options for a file system path	27
How the access cache works	28
Adding entries to the access cache	29
Removing entries from the access cache	29
Viewing access cache statistics	30
Optimizing access cache performance	30
Setting access cache timeout values	31
Enabling Kerberos v5 security services for NFS	31
Configuring Kerberos v5 security services for NFS to use an Active-	
Directory-based KDC	32

KDC	
NFS clients that support Kerberos v5 security services Debugging mounting problems	
Displaying mount service statistics Tracing mountd requests	
Displaying NFS statistics	
Enabling or disabling NFSv3	
Supporting NFSv4 clients	
About Data ONTAP support of NFSv4	
Limitations of Data ONTAP support for NFSv4	
How the pseudo-fs in NFSv4 affects mountpoints	
Specifying the user ID domain for NFSv4	
Managing NFSv4 ACLs	
Managing NFSv4 open delegations	
Configuring NFSv4 file and record locking	
Flushing the name server database cache	
Supporting PC-NFS clients	
How the penfsd daemon works	
Enabling or disabling the penfsd daemon	
Creating PC-NFS user entries in the storage system's local files	
How umask works with NFS file permissions	
Defining the umask for files and directories that PC-NFS users create Supporting WebNFS clients	
Enabling or disabling the WebNFS protocol	
Setting a WebNFS root directory	
File access using CIFS	
Connecting the MMC to the storage system	
Configuring CIFS on your storage system	
Supported Windows clients and domain controllers	
What the cifs setup command does	
Setting up your system initially	
Specifying WINS servers	
Changing the storage system domain	64

Changing protocol modes	66
Specifying Windows user account names	67
Considerations when reconfiguring CIFS	68
Reconfiguring CIFS on your storage system	69
Configuring SMB on your storage system	70
Support for the SMB 1.0 protocol	70
Support for the SMB 2.0 protocol	71
When to enable the SMB 2.0 protocol	73
Enabling or disabling the SMB 2.0 protocol	73
Enabling or disabling SMB 2.0 durable handles	74
Specifying the SMB 2.0 durable handle timeout value	74
SMB signing	74
Enabling or disabling the storage system's SMB 2.0 protocol client	
capability	77
Managing shares	77
Creating a share	78
Displaying and changing the properties of a share	81
Deleting a share	89
Managing access control lists	90
About share-level ACLs	90
Displaying and changing a share-level ACL	91
Displaying and changing a file-level ACL	97
Specifying how group IDs work with share-level ACLs	99
Managing home directories	100
About home directories on the storage system	101
How Data ONTAP matches a directory with a user	101
How symbolic links work with home directories	102
Specifying home directory paths	103
Displaying the list of home directory paths	104
Specifying the naming style of home directories	104
Creating directories in a home directory path (domain-naming style)	105
Creating directories in a home directory path (non-domain-naming	
style)	106
Creating subdirectories in home directories when a home directory p	ath
extension is used	106
Syntax for specifying a home directory using a LINC name	107

Enabling users to access other users' home directories	107
Accessing your CIFS home directory using a share alias	108
Enabling or disabling wide symbolic links from a share	108
Disabling home directories	109
Managing local users and groups	109
Managing local users	109
Managing local groups	111
Applying Group Policy Objects	114
Requirements for using GPOs with storage systems	115
Associating the storage system with an OU	115
Enabling or disabling GPO support on a storage system	115
Managing GPOs on the storage system	116
Improving client performance with oplocks	122
Write cache data loss considerations when using oplocks	123
Enabling or disabling oplocks on the storage system	123
Enabling or disabling oplocks on a qtree	124
Changing the delay time for sending oplock breaks	124
Managing authentication and network services	125
Understanding authentication issues	126
Setting the storage system's minimum security level	127
Preventing Kerberos passive replay attacks	128
Selecting domain controllers and LDAP servers	128
Using null sessions to access storage in non-Kerberos environments	132
Creating NetBIOS aliases for the storage system	135
Disabling NetBIOS over TCP	136
Monitoring CIFS activity	137
Different ways to specify a user	137
Displaying a summary of session information	138
Timing out idle sessions	138
Tracking statistics	138
Viewing specific statistics	139
Saving and reusing statistics queries	140
CIFS resource limitations	140
Managing CIFS services	140
Disconnecting clients using the MMC	141
Disconnecting a selected user from the command line	141

Disabling CIFS for the entire storage system	142
Specifying which users receive CIFS shutdown messages	143
Restarting CIFS service	143
Sending a message to users on a storage system	143
Displaying and changing the description of the storage system	144
Changing the computer account password of the storage system	144
About file management using Windows administrative tools	145
Troubleshooting access control problems	146
Adding permission tracing filters	146
Removing permission tracing filters	147
Displaying permission tracing filters	148
Finding out why Data ONTAP allowed or denied access	149
Using FPolicy	150
Introduction to FPolicy	150
Use of FPolicy within Data ONTAP	157
How to use native file blocking	158
How to work with FPolicy	162
FAQs, error messages, warning messages, and keywords	209
File sharing between NFS and CIFS	225
File sharing between NFS and CIFS	
9	225
About NFS and CIFS file naming	225 226
About NFS and CIFS file naming Length of file names	225 226 226
About NFS and CIFS file naming Length of file names Characters a file name can use	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names	225 226 226 226 227
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names How Data ONTAP creates file names	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names How Data ONTAP creates file names Controlling the display of dot files from CIFS clients	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names How Data ONTAP creates file names Controlling the display of dot files from CIFS clients Enabling file name character translation between UNIX and Windows	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names How Data ONTAP creates file names Controlling the display of dot files from CIFS clients Enabling file name character translation between UNIX and Windows Character restrictions	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names How Data ONTAP creates file names Controlling the display of dot files from CIFS clients Enabling file name character translation between UNIX and Windows Character restrictions Clearing a character mapping from a volume	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names How Data ONTAP creates file names Controlling the display of dot files from CIFS clients Enabling file name character translation between UNIX and Windows Character restrictions Clearing a character mapping from a volume About file locking between protocols	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names How Data ONTAP creates file names Controlling the display of dot files from CIFS clients Enabling file name character translation between UNIX and Windows Character restrictions Clearing a character mapping from a volume About file locking between protocols About read-only bits	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names How Data ONTAP creates file names Controlling the display of dot files from CIFS clients Enabling file name character translation between UNIX and Windows Character restrictions Clearing a character mapping from a volume About file locking between protocols About read-only bits Deleting files with the read-only bit set	
About NFS and CIFS file naming Length of file names Characters a file name can use Case-sensitivity of a file name Creating lowercase file names How Data ONTAP creates file names Controlling the display of dot files from CIFS clients Enabling file name character translation between UNIX and Windows Character restrictions Clearing a character mapping from a volume About file locking between protocols About read-only bits Deleting files with the read-only bit set Managing UNIX credentials for CIFS clients	

Enabling of disabling the SID-to-name map cache	244
Changing the lifetime of SID-to-name mapping entries	244
Clearing all or part of the SID-to-name map cache	244
Using LDAP services	245
Configuring LDAP services	246
Managing client authentication and authorization	253
Managing LDAP user-mapping services	254
Specifying base and scope values for user-mapping	255
Managing Active Directory LDAP servers	255
Managing LDAP schema	258
Enabling Storage-Level Access Guard using the fsecurity command	260
About the fsecurity command	260
Generating and editing the job definition file	261
Specifying job definition file elements	262
Creating a security job and applying it to the storage object	263
Checking the status of or canceling a security job	264
Displaying the security settings on files and directories	264
Removing the Storage-Level Access Guard	265
Auditing system access events	265
About auditing	265
Events that Data ONTAP can audit	266
Configuring system event auditing	267
Viewing and understanding event detail displays	279
Controlling CIFS access to symbolic links	283
Enabling CIFS clients to follow symbolic links	284
Specifying how CIFS clients interact with symbolic links	284
Why you should avoid symbolic links to files	285
About Map entries	285
About Widelink entries	285
About disabling share boundary checking for symbolic links	286
Redirecting absolute symbolic links	287
How the storage system uses Map and Widelink entries	289
Optimizing NFS directory access for CIFS clients	289
Creating Unicode-formatted directories	290
Converting to Unicode format	290
Preventing CIFS clients from creating uppercase file names	291

Accessing CIFS files from NFS clients	291
Adding mapping entries to the WAFL credential cache	292
Deleting mapping entries from the WAFL credential cache	292
Setting how long mapping entries are valid	293
Monitoring WAFL credential cache statistics	294
Managing mapping inconsistencies	295
Tracing CIFS logins	296
Tracing domain controller connections	296
Allowing CIFS clients without UNIX "execute" permissions to run .dll and .exe	;
files	297
File access using FTP	. 299
Managing FTP	299
Enabling or disabling the FTP server	299
Enabling or disabling the TFTP server	300
Enabling or disabling FTP file locking	300
Specifying the FTP authentication style	301
Enabling or disabling the bypassing of FTP traverse checking	302
Restricting FTP access	303
Managing FTP log files	305
Viewing SNMP traps that the FTP server generates	307
Viewing FTP statistics	309
Resetting FTP statistics	309
Specifying the maximum number of FTP connections	309
Specifying the maximum number of TFTP connections	310
Setting the FTP connection threshold	310
Specifying the TCP window size for FTP operations	310
Specifying the FTP idle timeout	311
Managing anonymous FTP access	311
File access using HTTP	. 313
Managing Data ONTAP's built-in HTTP server	313
Enabling or disabling Data ONTAP's built-in HTTP server	313
Enabling or disabling the bypassing of HTTP traverse checking	314
Specifying the root directory for Data ONTAP's built-in HTTP server	315
Specifying the maximum size of the log file for Data ONTAP's built-in	
HTTP server	315
Testing Data ONTAP's built-in HTTP server	315

Specifying how Data ONTAP's built-in HTTP server maps MIME	
content types to file name extensions	316
Specifying how Data ONTAP's built-in HTTP server translates HTTP	
requests	317
Configuring MIME Content-Type values	320
Maintaining security for Data ONTAP's built-in HTTP server	321
Displaying statistics for Data ONTAP's built-in HTTP server	327
Resetting statistics for Data ONTAP's built-in HTTP server	330
Viewing connection information for Data ONTAP's built-in HTTP	
server	330
Purchasing and connecting a third-party HTTP server to your storage system	332
File access using WebDAV	333
Understanding WebDAV	333
Managing Data ONTAP's built-in WebDAV server	334
Enabling or disabling Data ONTAP's built-in WebDAV server	334
Pointing a WebDAV client to a home directory	335
Purchasing and connecting a third-party WebDAV server to your storage	
system	335
CIFS resource limits by system memory	337
Limits for the FAS60xx storage systems	
Limits for the 30xx and 31xx storage systems	338
Limits for the FAS2040 storage system	339
Event log and audit policy mapping	341
Event Log mapping values	
Audit mapping values	342
Glossary	345
Indox	251

Copyright information

Copyright © 1994–2010 NetApp, Inc. All rights reserved. Printed in the U.S.A.

No part of this document covered by copyright may be reproduced in any form or by any means graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES: LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S.A. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark information

NetApp; the NetApp logo; the Network Appliance logo; Bycast; Cryptainer; Cryptoshred; DataFabric; Data ONTAP; Decru; Decru DataFort; FAServer; FilerView; FlexCache; FlexClone; FlexShare; FlexVol; FPolicy; gFiler; Go further, faster; Manage ONTAP; MultiStore; NearStore; NetCache; NOW (NetApp on the Web); ONTAPI; RAID-DP; SANscreen; SecureShare; Simulate ONTAP; SnapCopy; SnapDrive; SnapLock; SnapManager; SnapMirror; SnapMover; SnapRestore; SnapValidator; SnapVault; Spinnaker Networks; Spinnaker Networks logo; SpinAccess; SpinCluster; SpinFlex; SpinFS; SpinHA; SpinMove; SpinServer; SpinStor; StorageGRID; StoreVault; SyncMirror; Topio; vFiler; VFM; and WAFL are registered trademarks of NetApp, Inc. in the U.S.A. and/or other countries. Network Appliance, Snapshot, and The evolution of storage are trademarks of NetApp, Inc. in the U.S.A. and/or other countries and registered trademarks in some other countries. The StoreVault logo, ApplianceWatch, ApplianceWatch PRO, ASUP, AutoSupport, ComplianceClock, DataFort, Data Motion, FlexScale, FlexSuite, Lifetime Key Management, LockVault, NOW, MetroCluster, OpenKey, ReplicatorX, SecureAdmin, Shadow Tape, SnapDirector, SnapFilter, SnapMigrator, SnapSuite, Tech OnTap, Virtual File Manager, VPolicy, and Web Filer are trademarks of NetApp, Inc. in the U.S.A. and other countries. Get Successful and Select are service marks of NetApp, Inc. in the U.S.A.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. A complete and current list of other IBM trademarks is available on the Web at www.ibm.com/legal/copytrade.shtml.

Apple is a registered trademark and QuickTime is a trademark of Apple, Inc. in the U.S.A. and/or other countries. Microsoft is a registered trademark and Windows Media is a trademark of Microsoft Corporation in the U.S.A. and/or other countries. RealAudio, RealNetworks, RealPlayer, RealSystem, RealText, and RealVideo are registered trademarks and RealMedia, RealProxy, and SureStream are trademarks of RealNetworks, Inc. in the U.S.A. and/or other countries.

All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such.

NetApp, Inc. is a licensee of the CompactFlash and CF Logo trademarks.

NetApp, Inc. NetCache is certified RealSystem compatible.

About this guide

You can use your product more effectively when you understand this document's intended audience and the conventions that this document uses to present information.

Note: This guide applies to systems running Data ONTAP 8.x 7-Mode, including V-Series systems. The 7-Mode in the Data ONTAP 8.x 7-Mode product name means that this release has the features and functionality you are used to if you have been using the Data ONTAP 7.0, 7.1, 7.2, or 7.3 release families. If you are a Data ONTAP 8.x Cluster-Mode user, you use the Data ONTAP 8.x Cluster-Mode guides plus any Data ONTAP 8.x 7-Mode guides for functionality you might want to access with 7-Mode commands through the nodeshell.

Next topics

Audience on page 15 Accessing Data ONTAP man pages on page 15 Where to enter commands on page 16 Keyboard and formatting conventions on page 17 Special messages on page 18 How to send your comments on page 18

Audience

This document is written with certain assumptions about your technical knowledge and experience.

This document is for system administrators who are familiar with operating systems such as UNIX and Windows, that run on the storage system's clients. It also assumes that you are familiar with how to configure the storage system and how Network File System (NFS), Common Internet File System (CIFS), Hypertext Transport Protocol (HTTP), File Transport Protocol (FTP), Secure File Transport Protocol (SFTP), File Transport Protocol over SSL (FTPS), and Web-based Distributed Authoring and Versioning (WebDAV) are used for file sharing or transfers. This guide doesn't cover basic system or network administration topics, such as IP addressing, routing, and network topology; it emphasizes the characteristics of the storage system.

Accessing Data ONTAP man pages

You can use the Data ONTAP manual (man) pages to access technical information.

About this task

Data ONTAP manual pages are available for the following types of information. They are grouped into sections according to standard UNIX naming conventions.

_

Types of information	Man page section
Commands	1
Special files	4
File formats and conventions	5
System management and services	8

Step

- 1. View man pages in the following ways:
 - Enter the following command at the console command line:

```
man command or file name
```

 Click the manual pages button on the main Data ONTAP navigational page in the FilerView user interface.

Note: All Data ONTAP 8.x 7-Mode man pages are stored on the system in files whose names are prefixed with the string "na" to distinguish them from other man pages. The prefixed names sometimes appear in the NAME field of the man page, but the prefixes are not part of the command, file, or service.

Where to enter commands

You can use your product more effectively when you understand how this document uses command conventions to present information.

You can perform common administrator tasks in one or more of the following ways:

Note: Data ONTAP commands shown in this document are for Data ONTAP 8.x 7-Mode and the Data ONTAP 7.x release families. However, some of these commands might also be available at the nodeshell prompt on systems running Data ONTAP 8.x Cluster-Mode. See the Data ONTAP Cluster-Mode Administration Reference for more information.

- You can enter commands either at the system console or from any client computer that can obtain access to the storage system using a Telnet or Secure Shell (SSH) session. In examples that illustrate command execution, the command syntax and output shown might differ from what you enter or see displayed, depending on your version of the operating system.
- You can use the FilerView graphical user interface.

Keyboard and formatting conventions

You can use your product more effectively when you understand how this document uses keyboard and formatting conventions to present information.

Keyboard conventions

Convention	What it means
The NOW site	Refers to the NetApp Support site at now.netapp.com/.
Enter, enter	 Used to refer to the key that generates a carriage return; the key is named Return on some keyboards. Used to mean pressing one or more keys on the keyboard and then pressing the Enter key, or clicking in a field in a graphical interface and then typing information into the field.
hyphen (-)	Used to separate individual keys. For example, Ctrl-D means holding down the Ctrl key while pressing the D key.
type	Used to mean pressing one or more keys on the keyboard.

Formatting conventions

Convention	What it means
Italic font	 Words or characters that require special attention. Placeholders for information that you must supply. For example, if the guide says to enter the arp -d hostname command, you enter the characters "arp -d" followed by the actual name of the host. Book titles in cross-references.
Monospaced font	 Command names, option names, keywords, and daemon names. Information displayed on the system console or other computer monitors. Contents of files. File, path, and directory names.
Bold monospaced font	Words or characters you type. What you type is always shown in lowercase letters, unless your program is case-sensitive and uppercase letters are necessary for it to work properly.

Special messages

This document might contain the following types of messages to alert you to conditions that you need to be aware of.

Note: A note contains important information that helps you install or operate the system efficiently.

Attention: An attention notice contains instructions that you must follow to avoid a system crash, loss of data, or damage to the equipment.

How to send your comments

You can help us to improve the quality of our documentation by sending us your feedback.

Your feedback is important in helping us to provide the most accurate and high-quality information. If you have suggestions for improving this document, send us your comments by e-mail to doccomments@netapp.com. To help us direct your comments to the correct division, include in the subject line the name of your product and the applicable operating system. For example, FAS6070— Data ONTAP 7.3, or Host Utilities—Solaris, or Operations Manager 3.8—Windows.

Introduction to file access management

Through Data ONTAP, you can manage access to files of different protocols.

Next topics

File protocols that Data ONTAP supports on page 19 How Data ONTAP controls access to files on page 19

File protocols that Data ONTAP supports

Data ONTAP supports all of the most common file protocols, including NFS, CIFS, FTP, HTTP, and WebDAV

How Data ONTAP controls access to files

Data ONTAP controls access to files according to the authentication-based and file-based restrictions that you specify.

Next topics

Authentication-based restrictions on page 19 File-based restrictions on page 19

Authentication-based restrictions

With authentication-based restrictions, you can specify which client machines and which users can connect to the entire storage system.

Data ONTAP supports Kerberos authentication from both UNIX and Windows servers.

File-based restrictions

With file-based restrictions, you can specify which users can access which files.

When a user creates a file, Data ONTAP generates a list of access permissions for the file. While the form of the permissions list varies with each protocol, it always includes common permissions, such as reading and writing permissions.

When a user tries to access a file, Data ONTAP uses the permissions list to determine whether to grant access. Data ONTAP grants or denies access according to the operation that the user is performing, such as reading or writing, and the following factors:

- · User account
- User group or netgroup

- Client protocol
- · Client IP address
- File type

As part of the verification process, Data ONTAP maps host names to IP addresses using the lookup service you specify—Lightweight Directory Access Protocol (LDAP), Network Information Service (NIS), or local storage system information.

You can export and unexport file system paths on your storage system, making them available or unavailable, respectively, for mounting by NFS clients, including PC-NFS and WebNFS clients.

Next topics

Exporting or unexporting file system paths on page 21

Enabling and disabling fencing of one or more NFS clients from one or more file system paths on page 26

Displaying the actual file system path for an exported file system path on page 27

Displaying the export options for a file system path on page 27

How the access cache works on page 28

Enabling Kerberos v5 security services for NFS on page 31

Debugging mounting problems on page 40

Displaying NFS statistics on page 42

Enabling or disabling NFSv3 on page 42

Differences in file system ID (FSID) handling for NFSv3 and NFSv4 on page 43

Supporting NFSv4 clients on page 43

Supporting PC-NFS clients on page 56

Supporting WebNFS clients on page 58

Exporting or unexporting file system paths

You can export or unexport a file system path, making it available or unavailable to NFS clients, by editing the /etc/exports file or running the exports command.

Before you begin

To support secure NFS access (through using the sec=krb* export option), you must first enable Kerberos v5 security services.

About this task

If you need to make permanent changes to several export entries at once, it is usually easiest to edit the /etc/exports file directly. However, if you need to make changes to a single export entry or you need to make temporary changes, it is usually easiest to run the exportfs command.

Next topics

Editing the /etc/exports file on page 22

Using the exportfs command on page 23

Editing the /etc/exports file

To specify which file system paths Data ONTAP exports automatically when NFS starts, you can edit the /etc/exports file. For more information, see the na exports(5) manual page.

Before you begin

If the nfs.export.auto-update option is on, which it is by default, Data ONTAP automatically updates the /etc/exports file when you create, rename, or delete volumes. For more information, see the na options(1) manual page.

Note: The maximum number of lines in the /etc/exports file is 10,240. This includes commented lines. The maximum number of characters in each export entry, including the end of line character, is 4,096.

About this task

An export entry has the following syntax:

```
path -option[, option...]
```

In the export entry syntax, path is a file system path (for example, a path to a volume, directory, or file) and option is an export option that specifies the following information:

- Which NFS clients have which access privileges (read-only, read-write, or root)
- The user ID (or name) of all anonymous or root NFS client users that access the file system path
- Whether NFS client users can create setuid and setgid executables and use the mknod command when accessing the file system path
- The security types that an NFS client must support to access the file system path
- The actual file system path corresponding to the exported file system path

Steps

- 1. Open the /etc/exports file in a text editor on an NFS client that has root access to the storage system.
- 2. Make your changes.
- 3. Save the file.

After you finish

If you edit the /etc/exports file using a text editor, your changes will not take effect until you export all file system paths in the /etc/exports file or synchronize the currently exported file system paths with those specified in the /etc/exports file.

Note:

Running the exports command with the -b, -p, or -z option also changes the /etc/exports file.

Using the exportfs command

To export or unexport file system paths from the command line, you can run the exportfs command. For more information, see the na exportfs(1) man page.

Next topics

Exporting file system paths on page 23

Unexporting file system paths on page 24

Synchronizing the currently exported file system paths with those specified in the /etc/exports *file* on page 26

Exporting file system paths

You can export a file system path with or without adding a corresponding entry to the /etc/ exports file. In addition, you can export all file system paths specified in the /etc/exports file.

Next topics

Exporting a file system path and adding a corresponding entry to the /etc/exports file on page 23 Exporting a file system path without adding a corresponding entry to the /etc/exports *file* on page 24

Exporting all file system paths specified in the /etc/exports file on page 24

Exporting a file system path and adding a corresponding entry to the /etc/exports file

You can use the exports -p command to export a file system path and add a corresponding export entry to the /etc/exports file.

Step

1. Enter the following command:

```
exportfs -p [options] path
```

options is a comma-delimited list of export options. For more information, see the na exports(5) man page.

path is a file system path (for example, a path to a volume, directory, or file).

Note: If you do not specify any export options, Data ONTAP automatically exports the file system path with the rw and sec=sys export options.

Exporting a file system path without adding a corresponding entry to the /etc/exports file

You can use the exportfs -io command to export a file system path without adding a corresponding export entry to the /etc/exports file.

Step

1. Enter the following command:

```
exportfs -io [options] path
```

options is a comma-delimited list of export options. For more information, see the na exports(5) man page.

path is a file system path (for example, a path to a volume, directory, or file).

Note: If you do not specify any export options, Data ONTAP uses the export options specified for the file system path in the /etc/exports file, if any.

Exporting all file system paths specified in the /etc/exports file

You can use the exports -a command to export all file system paths specified in the /etc/exports file.

Step

1. Enter the following command:

```
exportfs -a
```

Unexporting file system paths

You can unexport one file system path and optionally remove its corresponding entry from the / etc/exports file. In addition, you can unexport all file system paths without removing their corresponding entries from the /etc/exports file.

Next topics

Unexporting one file system path on page 25 *Unexporting all file system paths* on page 25

Unexporting one file system path

You can use the exports -u command to unexport one file system path without removing its corresponding entry from the /etc/exports file. You can use the exportfs -z command to unexport one file system path and remove its corresponding entry from the /etc/exports file.

Step

1. Perform one of the following actions.

If you want to unexport one file system path	Then
Without removing its corresponding entry from the /etc/exports file	Enter the following command:
	exportfs -u path
	path is the file system path.
And remove its corresponding entry from the /etc/exports file	Enter the following command:
	exportfs -z path
	path is the file system path.

Unexporting all file system paths

You can use the exportfs -ua command to unexport all file system paths without removing their corresponding entries from the /etc/exports file.

Note: Be aware that running this command unmounts all file system paths, disconnecting all NFS clients from the storage system.

Step

1. Enter the following command:

exportfs -ua

- -u specifies to unexport file system paths.
- -a specifies all file system paths.

Synchronizing the currently exported file system paths with those specified in the /etc/ exports file

You can use the exportfs -r command to export all file system paths specified in the /etc/ exports file and unexport all file system paths not specified in the /etc/exports file.

Step

1. Enter the following command:

exportfs -r

Enabling and disabling fencing of one or more NFS clients from one or more file system paths

You can use fencing to give multiple NFS clients temporary or permanent read-only or read-write access to multiple file system paths.

About this task

When you enable or disable fencing, Data ONTAP moves the NFS clients you specify to the front of their new access lists (rw= or ro=). This reordering can change your original export rules.

Step

1. Enter the following command:

exportfs -b enable | disable save | nosave allhosts | clientid[:clientid...] allpaths | path[:path...]

If you want to	Then
Enable fencing	Specify the enable option.
Disable fencing	Specify the disable option.
Update the /etc/exports file	Specify the save option.
Prevent the updating of the /etc/exports file	Specify the nosave option.
Affect all NFS clients	Specify the allhosts option.
Affect all exported file system paths	Specify the allpaths option.
Affect a specific set of NFS clients	Specify a colon-delimited list of NFS client identifiers.
Affect a specific set of file system paths	Specify a colon-delimited list of file system paths

Displaying the actual file system path for an exported file system path

You can use the exportfs -s command to display the actual file system path for an exported file system path, y.

About this task

A file system's actual path is the same as its exported path unless you export it with the -actual option. For more information, see the na_exports(5) man page.

Step

1. Enter the following command:

```
exportfs -s path
```

path specifies the exported file system path.

Displaying the export options for a file system path

You can use the exports -q command to display the export options for a file system path, which can help you in debugging an export problem.

Step

1. Enter the following command:

```
exportfs -q path
```

path specifies the file system path.

Result

Data ONTAP displays the export options for the path you specify.

Note: Data ONTAP also displays a rule identifier for each option, but you do not need the rule identifier unless you are using diagnostic commands. For more information, contact technical support.

How the access cache works

The Data ONTAP access cache reduces the likelihood of having to perform a reverse DNS lookup or parse netgroups when granting or denying an NFS client access to a file system path. This results in performance improvements due to less time used for DNS lookups.

Whenever an NFS client attempts to access a file system path, Data ONTAP must determine whether to grant or deny access. Except in the most simple cases (for example, when file systems paths are exported with just the ro or rw option), Data ONTAP grants or denies access according to a value in the access cache that corresponds to the following things:

- The file system path
- The NFS client's IP address, access type, and security type

This value might not exist in the access cache entry if Data ONTAP has not made a previous access determination or you have not created an access cache entry using the exportfs -c command for this particular NFS client-file system-path combination. In this case, Data ONTAP grants or denies access according to the result of a comparison between the following things:

- The NFS client's IP address (or host name, if necessary), access type, and security type
- The file system path's export options

Data ONTAP then stores the result of this comparison in the access cache.

To reduce the likelihood that of having to perform a reverse DNS lookup or parse netgroups, Data ONTAP breaks this comparison into three stages. It performs each successive stage of the comparison only if necessary to determine whether the NFS client has access to the file system path.

In the first stage, Data ONTAP compares the NFS client's IP address with all export rules that consist entirely of IP addresses, including single IP addresses, subnets, and host names that Data ONTAP has previously resolved to IP addresses.

In the second stage, Data ONTAP performs a reverse DNS lookup on the NFS client's IP address, and then compares the NFS client's host name with all of the export rules that contain subdomains and host names that Data ONTAP has not resolved into IP addresses.

In the third stage, Data ONTAP parses netgroups.

Data ONTAP backs up the entry cache onto disk every 15 minutes so that the information in the access cache is available after reboots and after takeover or giveback.

Next topics

Adding entries to the access cache on page 29 Removing entries from the access cache on page 29 Viewing access cache statistics on page 30 Optimizing access cache performance on page 30 Setting access cache timeout values on page 31

Adding entries to the access cache

You can use the exportfs -c command to check whether an NFS client has a specific type of access to a file system path and simultaneously add a corresponding entry to the access cache.

Step

1. To check NFS client access and add an entry to the access cache, enter the following command:

```
exportfs -c clientaddr[:clientaddr...] path [accesstype] [securitytype]
clientaddr specifies the NFS client IP address.
```

path specifies the file system path.

accesstype specifies one of the following access type options:

- ro—read-only access
- rw—read-write access
- root—root access

If you do not specify an access type, Data ONTAP simply checks whether the NFS client can mount the file system path.

security type specifies one of the following security type options:

- sys—Unix-style security
- none—no security
- krb5—Kerberos Version 5 authentication
- krb5i—Kerberos Version 5 integrity service
- krb5p—Kerberos Version 5 privacy service

If you do not specify a security type, Data ONTAP assumes the NFS client's security type is sys.

Removing entries from the access cache

Data ONTAP automatically removes entries from the access cache when you unexport a file system path or the entries time out. You can use the exportfs -f command to manually remove entries from the access cache.

About this task

Step

1. To remove entries from the access cache, enter the following command:

```
exportfs -f [path]
```

path specifies the file system path for which you want to remove entries from the access cache. If you do not specify a file system path, Data ONTAP removes all entries from the access cache.

For more information, see the na exportfs(1) man page.

Viewing access cache statistics

You can use the nfsstat -d command to view access cache statistics. This enables you to view detailed information about access cache statistics, connections, requests, and more for troubleshooting purposes.

Step

1. To view access cache statistics, enter the following command:

```
nfsstat -d
```

For more information about these access cache statistics, see the na nfsstat(1) man page.

Optimizing access cache performance

To optimize access cache performance, you should reuse identical export rules as often as possible.

About this task

Data ONTAP maintains a single access cache entry for all export entries that specify the same rule.

Step

1. Reuse identical export rules whenever possible.

Example

Even though the

```
ro,rw=@group1
```

rule exists in both of the following export entries, Data ONTAP maintains a single access cache entry for the rule:

```
/vol/a -sec=sys,ro,sec=sys,rw=@group1,sec=krb5,rw=@group2
/vol/b -sec=sys,ro,sec=sys,rw=@group1
```

Setting access cache timeout values

You can set several options to customize the access cache timeout behavior. This enables you to balance access cache performance with how recent the stored information is.

Steps

1. To specify how long Data ONTAP keeps an entry in the access cache, enter the following command:

options nfs.export.harvest.timeout integer

integer specifies the idle expiration time for entries in the export access cache in seconds. The default is 3600 seconds (one hour). The minimum value is 60 seconds. The maximum value is 604800 seconds (seven days).

2. To specify how long Data ONTAP uses an access cache entry which was denied access before refreshing it, enter the following command:

```
options nfs.export.neg.timeout integer
```

integer specifies the timeout period in seconds. The default is 1800 seconds (30 minutes). The minimum value is 60 seconds. The maximum value is 604800 seconds (seven days).

3. To specify how long Data ONTAP uses an access cache entry which was granted access before refreshing it, enter the following command:

```
options nfs.export.pos.timeout integer
```

integer specifies the idle expiration time for entries in the export access cache in seconds. The default is 36000 seconds (ten hours). The minimum value is 60 seconds. The maximum value is 604800 seconds (seven days). For more information, see the na_options(1) man page.

Enabling Kerberos v5 security services for NFS

To enable Kerberos v5 security services for NFS, you can use the nfs setup command.

About this task

Data ONTAP provides secure NFS access using the Kerberos v5 authentication protocol to ensure the security of data and the identity of users within a controlled domain.

The Data ONTAP Kerberos v5 implementation for NFS supports two Kerberos Key Distribution Center (KDC) types: Active Directory-based and UNIX-based, as described in the following table.

KDC type	Description
Active Directory-based	The Kerberos realm for NFS is an Active Directory-based KDC. You must configure CIFS with Microsoft Active Directory authentication (which is Kerberos-based); then NFS will use the CIFS domain controller as the KDC.
UNIX-based	The Kerberos realm for NFS is an MIT or Heimdal KDC.
Multirealm	Uses a UNIX-based KDC for NFS and an Active Directory-based KDC for CIFS. Available in Data ONTAP 7.3.1 and later releases.

Note: To support Kerberos multirealm configurations, Data ONTAP uses two sets of principal and keytab files. For Active Directory-based KDCs, the principal and keytab files are /etc/ krb5auto.conf and /etc/krb5.keytab, respectively, just as in releases prior to Data ONTAP 7.3.1. For UNIX-based KDCs, however, the principal and keytab files are /etc/krb5.conf and /etc/UNIX_krb5.keytab, respectively. Starting with Data ONTAP 7.3.1, the keytab file for UNIX-based KDCs has changed from /etc/krb5.keytab to /etc/UNIX krb5.keytab.

Data ONTAP continues to use the old keytab file /etc/krb5.keytab, however, if you upgrade from a release prior to Data ONTAP 7.3.1 in which Data ONTAP was configured to use a UNIXbased KDC for NFS. You need only use the new keytab file /etc/UNIX_krb5.keytab for UNIX-based KDCs if you are reconfiguring CIFS after upgrading from such a release or if you are configuring NFS for the first time after configuring an Active-Directory-based KDC for CIFS.

Next topics

Configuring Kerberos v5 security services for NFS to use an Active-Directory-based *KDC* on page 32

Configuring Kerberos v5 security services for NFS to use a UNIX-based KDC on page 35 NFS clients that support Kerberos v5 security services on page 40

Configuring Kerberos v5 security services for NFS to use an Active-**Directory-based KDC**

You can configure Kerberos v5 security services for NFS to use an Active-Directory-based KDC before or after running the cifs setup command. The security service setup procedure adds your storage system to an Active Directory-based KDC as a service principal called nfs/ hostname.domain@REALM.

Next topics

Configuring Kerberos v5 security services for NFS to use an Active-Directory-based KDC before configuring CIFS on page 33

Configuring Kerberos v5 security services for NFS to use an Active-Directory-based KDC after configuring CIFS on page 35

Configuring Kerberos v5 security services for NFS to use an Active-Directory-based KDC before configuring CIFS

If you have not run cifs setup to configure CIFS, you must provide configuration information that would otherwise have been taken from your CIFS configuration.

You must configure your storage system to use the Active Directory-based domain name service, modify the /etc/resolv.conf file as necessary to ensure that it lists only Active Directory servers.

For example, for a Kerberos realm in which the Active Directory servers are 172.16.1.180 and 172.16.1.181, you would change /etc/resolv.conf to include only the following Active Directory server entries:

```
nameserver 172.16.1.180
nameserver 172.16.1.181
```

Make sure you remove all other Active Directory server entries for that realm.

If you have already used nfs setup to enter configuration information, the prompts you receive may differ from those shown in the following procedure.

Steps

1. Enter the following command:

```
nfs setup
```

You receive the following message:

```
Enable Kerberos for NFS?
```

2. To continue, enter the following: y

You are asked to specify the type of KDC:

```
The filer supports these types of Kerberos Key Distribution Centers (KDCs):

1 - UNIX KDC

2 - Microsoft Active Directory KDC

Enter the type of your KDC (1-2):
```

3. Enter the following: 2

You are prompted to specify the storage system name:

```
The default name of this filer will be 'SERVER'
Do you want to modify this name? [no]:
```

4. Enter **yes** to be prompted for a storage system name or press **Enter** to accept the default storage system name "SERVER".

You are prompted to specify the domain name for the storage system's Active Directory server:

```
Enter the Windows Domain for the filer []:
```

5. Enter the domain name for the Active Directory server.

The domain name you enter is also used as the Kerberos realm name.

You are prompted to set up a local administrator account.

6. Enter the local administrator account information.

Note: This step has no effect on Kerberos configuration for an Active Directory KDC.

7. After you enter local administrator account information, verify the resulting message.

It should look similar to the following example:

```
ADKDC.LAB.DOCEXAMPLE.COM is a Windows 2000(tm) domain.
```

This message verifies that the storage system was able to find the Active Directory server, and that the storage system has determined this server can function as a KDC server.

If you do not receive a message such as this one, it indicates that there may be a problem with the Active Directory server, or that the DNS server for the storage system is not an Active Directory server. Check your network configuration, then run nfs setup again.

8. When you receive the following type of message, enter name and password information for the Active Directory domain administrator:

```
In order to create this filer's domain account, you must supply the name and password of an administrator account with sufficient privilege to add the filer to the ADKDC.LAB.DOCEXAMPLE.COM domain. Please enter the Windows 2000 user [Administrator@ADKDC.LAB.DOCEXAMPLE.COM] Password for Administrator:
```

If the password is correct and the specified account has the proper permissions within the storage system domain, you receive the following type of message:

```
CIFS - Logged in as administrator@ADKDC.LAB.DOCEXAMPLE.COM. Welcome to the ADKDC (ADKDC.LAB.DOCEXAMPLE.COM) Windows 2000(tm) domain. Kerberos now enabled for NFS. NFS setup complete.
```

You might see the following message in the output text upon completion of NFS setup. This output is an artifact of the installation process, and can be ignored:

```
CIFS is not licensed.
(Use the "license" command to license it.)
```

Configuring Kerberos v5 security services for NFS to use an Active-Directory-based KDC after configuring CIFS

If you have already run cifs setup and configured Data ONTAP to use Active Directory for CIFS, nfs setup automatically uses some of the configuration information you specified for CIFS.

Note: If you have already used nfs setup to enter configuration information, the prompts you receive may differ from those shown in the following procedure.

Steps

1. Enter the following command:

nfs setup

You receive the following message from nfs setup:

```
Enable Kerberos for NFS?
```

2. Enter y to continue.

You are asked to specify the type of KDC:

```
The filer supports these types of Kerberos Key Distribution Centers
(KDCs):
1 - UNIX KDC
2 - Microsoft Active Directory KDC
Enter the type of your KDC (1-2):
```

3. Enter 2.

You receive the following message:

```
Kerberos now enabled for NFS.
NFS setup complete.
```

The Data ONTAP is now configured for Active Directory-based KDC Kerberos over NFS.

Configuring Kerberos v5 security services for NFS to use a UNIX-based **KDC**

To configure Kerberos v5 security services for NFS to use a UNIX-based KDC, you can create a principal (a realm user ID) and generate a keytab (key table file) for your storage system and configure Data ONTAP to use your UNIX-based KDC.

Before you begin

Make sure the following requirements are met:

 An NFS client and a UNIX-based KDC are set up, with client principals for root and at least one non-root client.

• NFS access is verified for a client and an existing network server.

You should enable DNS on your storage system before setting up and using secure NFS. If the host component is not already a fully qualified domain name and DNS has not been enabled, then you must change all your NFS server principal names in order to enable DNS later.

Note: You cannot authenticate CIFS clients with a UNIX-based KDC (that is, because of proprietary restrictions, there are no UNIX-based Kerberos implementations that support CIFS clients). However, in Data ONTAP 7.3.1 and later releases, which provide Kerberos multirealm functionality, you can configure CIFS to use a Microsoft Active Directory-based KDC for authentication of CIFS clients while simultaneously configuring NFS to use a UNIX-based KDC for authentication of NFS clients.

About this task

The following procedures show by example how to add a storage system to a standard UNIX-based KDC as a service principal called nfs/hostname.domain@REALM.

Next topics

Creating a principal and generating a keytab file on page 36 Enabling Kerberos v5 security services for NFS on page 38

Creating a principal and generating a keytab file

To create a principal and generate a keytab file, you can use the kadmin command.

If any version of Kerberos is currently enabled on the storage system, you must first disable it by running nfs setup. In Kerberos is enabled, the following prompt appears:

```
Disable Kerberos for NFS?
```

Regardless of your response (y or n), the storage system terminates NFS setup; if you choose to disable Kerberos, the storage system first disables any current Kerberos implementation you have configured. For UNIX-based Kerberos, the nfs.kerberos.file_keytab.enable option is set to off.

Steps

- 1. On a UNIX or Linux system that supports UNIX-based Kerberos v5 services, enter the kadmin command or, if logged into the KDC, enter the kadmin.local command.
- 2. On the kadmin or kadmn.local command line, enter the following command:

ank -randkey nfs/hostname.domain

hostname is the host name of the NFS server principal and domain is the domain of the NFS server principal.

A principal is created for the NFS server; for example, nfs/server.lab.my_company.com@LAB.MY_COMPANY.COM, where the realm is @LAB.MY_COMPANY.COM.

If your KDC software creates a principal with a default encryption type that Data ONTAP does not support, such as the des3* or aes128* encryption type, you must invoke the ank command with the -e parameter to specify an encryption type that Data ONTAP does support, such as descbc-md5:normal. For example, the following command creates a principal with the des-cbc-md5 encryption type:

kadmin: ank -e des-cbc-md5:normal -randkey nfs/server.lab.my_company.com
For more information, see your KDC software documentation.

3. On the kadmn or kadmn.local command line, enter the following command:

xst -k/tmp/filer.UNIX_krb5.conf nfs/hostname.domain
hostname is the host name of the server principal and domain is the domain of the server
principal you created in Step 2. For example, enter:

kadmin: xst -k/tmp/filer.UNIX_krb5.conf nfs/server.lab.my_company.com
A keytab is created for the server principal nfs/

server.lab.my_company.com@LAB.MY_COMPANY.COM. The KVNO 3 encryption type DES-CBC-CRC is added to the keytab WRFILE:/tmp/filer.UNIX_krb5.conf.

If your KDC software creates a keytab with a default encryption type that Data ONTAP does not support, such as the des3* or aes128* encryption type, you must invoke the xst command with the -e parameter to specify an encryption type that Data ONTAP does support, such as des-cbc-md5:normal. For example, the following command creates a keytab with the des-cbc-md5 encryption type:

```
xst -k /tmp/filer.keytab -e des-cbc-md5:normal nfs/
filer.lab.mycompany.com
```

For more information, see your KDC software documentation.

4. On the NFS server, enter the following command:

```
cp /tmp/filer.UNIX_krb5.keytab /net/filer/vol/vol0/etc/
krb5.UNIX_krb5.keytab
```

The keytab is copied to the storage system.

Attention: Once the keytab is copied to the storage system, be sure you do not export the /etc subdirectory of the volume. If you export the /etc subdirectory, clients can read the key information and masquerade as the storage system.

5. To copy the krb5.conf file to the storage system, do one of the following: On a UNIX client running MIT KDC software, enter the following command:

cp /etc/krb5.conf /net/filer/vol/vol0/etc/krb5.conf On a Solaris client running SEAM, enter the following command:

cp /etc/krb5/krb5.conf /net/filer/vol/vol0/etc/krb5.conf

Enabling Kerberos v5 security services for NFS

To enable Kerberos v5 security services for NFS, you can use the nfs setup command. The nfs setup command permits you to configure your storage system for a UNIX-based KDC before creating the server principal and keytab file. However, you need to create the server principal and keytab file before you can use Kerberos.

Steps

1. Enter the following command:

nfs setup

You receive the following message from nfs setup:

Enable Kerberos for NFS?

2. Enter y to continue.

You are asked to specify the type of KDC:

```
The filer supports these types of Kerberos Key Distribution Centers (KDCs):

1 - UNIX KDC

2 - Microsoft Active Directory KDC
Enter the type of your KDC (1-2):
```

3. Enter **1**.

If you have not yet set up your server principal file and keytab file, you will receive one of several warnings, but the setup process will continue.

If you are running nfs setup after a fresh installation, you will receive the following warning message:

There is no /etc/krb5.conf file yet. You will need to establish one. Unix KDC uses the keytab file /etc/UNIX_krb5.keytab. There is no /etc/UNIX_krb5.keytab file yet. You will need to establish one.

If you are running nfs setup after running cifs setup (and you configured CIFS to use an Active-Directory-based KDC), you will receive the following warning message:

There is no /etc/krb5.conf file yet. You will need to establish one. You have an existing keytab file /etc/krb5.keytab. Your new keytab file for Unix KDC would be /etc/UNIX_krb5.keytab.

NOTE: If CIFS Active Directory based authentication has been configured on this filer at any point in the past, the /etc/krb5.keytab might belong to CIFS. Do you want to rename your existing keytab file /etc/krb5.keytab to the new keytab file /etc/UNIX_krb5.keytab.

(Yes/No)? n

Unix KDC uses the keytab file /etc/UNIX_krb5.keytab. There is no /etc/UNIX_krb5.keytab file yet. You will need to establish one.

If you are running nfs setup for the first time after upgrading Data ONTAP from a release prior to Data ONTAP 7.3.1, you will receive the following warning message:

Your new keytab file for Unix KDC would be /etc/UNIX_krb5.keytab. NOTE: If CIFS Active Directory based authentication has been configured on this filer at any point in the past, the /etc/krb5.keytab might belong to CIFS. Do you want to rename your existing keytab file /etc/krb5.keytab to the new keytab file /etc/UNIX_krb5.keytab. (Yes/No)? y /etc/krb5.keytab renamed to /etc/UNIX_krb5.keytab

If you respond negatively to either of the last two prompts, nfs setup proceeds without renaming the keytab file.

You are prompted to enter the Kerberos realm name.

Enter the Kerberos realm name.

4. Enter the realm name for the UNIX-based KDC.

The realm name is the realm-specific part of the NFS server's Kerberos principal name (the name you specified for the NFS server principal). For example, MY_COMPANY.COM. The realm name you enter can be verified or modified later by changing the value of the nfs.kerberos.realm option:

options nfs.kerberos.realm realm_name Example

options nfs.kerberos.realm LAB.MY_COMPANY.COM

Note: Data ONTAP supports lowercase realm names for UNIX-based KDCs but not for Active Directory KDCs.

You are prompted to enter a host instance.

Enter the host instance of the NFS server principal name [default: server.lab.my_company.com]:

5. Enter a host instance.

Example

server.lab.my_company.com

If DNS is enabled, it is used to verify that you have entered a fully qualified domain name for your host. If you have entered a partial name and your host has been entered in DNS, the missing domain information will be appended to your entry.

The host instance you enter can be verified using the nfs.kerberos.principal option:

options nfs.kerberos.principal

The nfs setup command uses your entries for the host instance and realm name to identify the Kerberos principal. The principal is derived from nfs setup entries as described here:

nfs/value from nfs.kerberos.principal@value from nfs.kerberos.realm

Once you enter the host instance and exit nfs setup, the storage system is configured to use the key table file you generated. You can modify this configuration later by running nfs setup again.

NFS clients that support Kerberos v5 security services

Before using Kerberos v5 security services with an NFS client, you should make sure the NFS client supports RFC1964 and RFC2203.

The list of NFS clients that support Kerberos v5 security includes widely used NFS clients that have been tested either in the production laboratory or at interoperability test events, such as Connectathon (www.connectathon.org).

NFS clients that support Kerberos v5 security services include the following (additional required software indicated where applicable):

- AIX 5.3 running NFSv2, NFSv3, NFSv4 with AIX 5L Expansion Pack and Web Download Pack, available from IBM
- Linux 2.6 running NFSv2, NFSv3, or NFSv4
- Solaris 2.6 running NFSv2 or NFSv3 with Sun Enterprise Authentication Mechanism (SEAM) 1.0, available in Sun Microsystems' Solaris Easy Access Server (SEAS) 3.0 product bundle
- Solaris 7 running NFSv2 or NFSv3 with SEAM 1.0, available from Sun Microsystems' SEAS 3.0 product bundle
- Solaris 8 running NFSv2 or NFSv3 with SEAM 1.0.1, available from Sun Microsystems' Solaris 8 Admin Pack or the Solaris 8 Encryption Pack
- Solaris 9 running NFSv2 or NFSv3
- Solaris 10 running NFSv2, NFSv3, or NFSv4
- Windows clients running NFSv2 or NFSv3 with Hummingbird NFS Maestro version 7 or NFS Maestro Solo version 7
- Windows clients running NFSv2, NFSv3, or NFSv4 with Hummingbird NFS Maestro Client version 8 or NFS Maestro Solo version 8

Debugging mounting problems

To debug mounting problems, you can display mount service statistics and trace mounted requests.

Next topics

Displaying mount service statistics on page 41 Tracing mountd requests on page 41

Displaying mount service statistics

To display mount service statistics, you can enter the nfsstat -d command.

Step

1. Enter the following command:

```
nfsstat -d
```

Result

Data ONTAP displays the following mount service statistics:

```
v2 mount (requested, granted, denied, resolving)
v2 unmount (requested, granted, denied)
v2 unmount all (requested, granted, denied)
v3 mount (requested, granted, denied, resolving)
v3 unmount (requested, granted, denied)
v3 unmount all (requested, granted, denied)
mount service requests (curr, total, max, redriven)
```

For more information, see the na nfsstat(1) man page.

Tracing mountd requests

To trace mountd requests, you can add a *.debug entry to the /etc/syslog.conf file and set the nfs.mountd.trace option to on.

About this task

Because there is a possibility that the syslog will get hit numerous times during DOS attacks, this option should be enabled only during a debug session.

By default, the nfs.mountd.trace option is off.

Steps

1. Edit the /etc/syslog.conf file and add a *.debug entry.

For more information about adding an entry to the syslog.conf file, see the na_syslog.conf(5) man page.

2. To enable the nfs.mountd.trace option, enter the following command:

```
options nfs.mountd.trace on
```

For more information about the nfs.mountd.trace option, see the na options(1) man page.

Displaying NFS statistics

To display NFS statistics for all NFS versions, you can use the nfsstat command.

About this task

You can use the nfsstat command to display NFS statistics for all clients. Or, if the nfs.per_client_stats.enable option is on, you can use the nfsstat -h or nfsstat -l commands to display NFS statistics on a per-client basis.

In addition to displaying NFS statistics, you can use the nfsstat command to reset NFS statistics.

For more information, see the na_nfsstat(1) man page and the following topics:

- Displaying mount service statistics
- Displaying NFSv4 open delegation statistics

Step

1. To display NFS statistics, enter the following command:

nfsstat

Enabling or disabling NFSv3

You can enable or disable NFSv3 by setting the nfsv3.enable option to on or off, respectively. By default, NFSv3 is enabled.

Step

1. Perform one of the following actions:

If you want to	Then
Enable NFSv3	Enter the following command:
	options nfs.v3.enable on
Disable NFSv3	Enter the following command:
	options nfs.v3.enable off

Differences in file system ID (FSID) handling for NFSv3 and NFSv4

You can configure Data ONTAP to either return the same or a different FSID for .snapshot subdirectories and files as for the active file system in NFSv3 and NFSv4.

When you mount an exported path and get a directory listing of the .snapshot directory and subdirectories, the returned file and directory attributes include the FSID. The FSID of the .snapshot subdirectories should be the same as the FSID of the active file system. The FSID of the .snapshot subdirectories vary depending on the following two options.

If you	Then
Enable the option nfs.v3.snapshot.active.fsid.enab le .	For NFSv3 requests the FSID returned for directories and files within the .snapshot is the same as the FSID of the active file system.
Disable the option nfs.v3.snapshot.active.fsid.enab le	For NFSv3 requests the FSID returned for directories and files within the .snapshot are different from the FSID of the active file system.
Enable the option nfs.v4.snapshot.active.fsid.enab le .	For NFSv4 requests the FSID returned for directories and files within the .snapshot is the same as the FSID of the active file system.
Disable the option nfs.v4.snapshot.active.fsid.enab le .	For NFSv4 requests the FSID returned for directories and files within the .snapshot are different from the FSID of the active file system.

Supporting NFSv4 clients

Supporting NFSv4 clients involves enabling or disabling the NFSv4 protocol, specifying an NFSv4 user ID domain, managing NFSv4 ACLS and file delegation, and configuring file and record locking.

Next topics

About Data ONTAP support of NFSv4 on page 44 Limitations of Data ONTAP support for NFSv4 on page 44

How the pseudo-fs in NFSv4 affects mountpoints on page 45

Enabling or disabling NFSv4 on page 46

Specifying the user ID domain for NFSv4 on page 46

Managing NFSv4 ACLs on page 46

Managing NFSv4 open delegations on page 50

Configuring NFSv4 file and record locking on page 53

Flushing the name server database cache on page 55

About Data ONTAP support of NFSv4

Data ONTAP supports all of the mandatory functionality in NFSv4 except the SPKM3 and LIPKEY security mechanisms.

This functionality consists of the following:

COMPOUND Allows a client to request multiple file operations in a single remote procedure

call (RPC) request.

Open delegation Allows the server to delegate file control to some types of clients for read and

write access.

Pseudo-fs Used by NFSv4 servers to determine mountpoints on the storage system. There

is no mount protocol in NFSv4.

Locking Lease-based. There are no separate Network Lock Manager (NLM) or Network

Status Monitor (NSM) protocols in NFSv4.

Named attributes Similar to Windows NT streams.

For more information about the NFSv4 protocol, search the Web for "RFC 3050." RFC 3050 is the "Internet Engineering Task Force (EITF) Request for Comments" specification, entitled "Network File System (NFS) version 4 Protocol," that defines the NFSv4 protocol.

Limitations of Data ONTAP support for NFSv4

You should be aware of several limitations of Data ONTAP support for NFSv4.

- The SPKM3 and LIPKEY security mechanisms are not supported.
- The delegation feature is not supported by every client type.
- Names with non-ASCII characters on volumes other than UTF8 volumes are rejected by the storage system.
- All file handles are persistent; the server does not give volatile file handles.
- Migration and replication are not supported.
- All recommended attributes are supported, except for the following:
 - archive
 - hidden
 - homogeneous
 - mimetype
 - quota_avail_hard
 - quota_avail_soft
 - quota_used
 - system
 - time_backup

Note: Although it does not support the quota* attributes, Data ONTAP does support user and group quotas through the RQUOTA side band protocol.

• NFSv4 does not use the User Datagram Protocol (UDP) transport protocol.

If you enable NFSv4 and disable NFS over TCP by setting options nfs.tcp.enable to off, then NFSv4 is effectively disabled.

How the pseudo-fs in NFSv4 affects mountpoints

NFSv4 uses a pseudo-fs (file system) as an entry point into your storage system for determining mountpoints. A pseudo-fs allows you to use one port for security, rather than several. All NFSv4 servers support the use of a pseudo-fs.

Because of the pseudo-fs used in NFSv4, you might experience inconsistencies with mountpoints between NFSv3 and NFSv4.

In the examples that follow, you have these volumes:

- /vol/vol0 (root)
- /vol/vol1
- /vol/home

Example 1

In NFSv3 if you do not use the complete path from /vol/vol0, and you mount filer:/, the mountpoint is filer:/vol/vol0. That is, if the path does not begin with /vol in NFSv3, Data ONTAP adds /vol/vol0 to the beginning of the path.

In NFSv4, if you do not use the complete path from /vol/vol0 and you mount filer:/, you mount the root of the pseudo-fs and not /vol/vol0. Data ONTAP does not add /vol/vol0 to the beginning of the path.

Therefore, if you mount filer: / /n/filer using NFSv3 and try the same mount using NFSv4, you would mount a different file system.

Example 2

In the Data ONTAP implementation of the NFSv4 pseudo-fs, the nodes / and /vol are always present and form the common prefix of any reference into the pseudo-fs. Any reference that does not begin with /vol is invalid.

In this example, there is a /vol/vol0/home directory. In NFSv3, if you mount filer:/home/users, /home is considered as the directory /vol/vol0/home. In NFSv4, if you mount filer:/home/users, /home is not interpreted as the volume /vol/home; it is considered an invalid path in the pseudo-fs tree.

Enabling or disabling NFSv4

You can enable or disable NFSv4 by setting the nfs.v4.enable option to on or off, respectively. By default, NFSv4 is disabled.

Step

1. Perform one of the following actions:

If you want to	Then
Enable NFSv4	Enter the following command:
	options nfs.v4.enable on
Disable NFSv4	Enter the following command:
	options nfs.v4.enable off

Specifying the user ID domain for NFSv4

To specify the user ID domain, you can set the nfs.v4.id_domain option.

About this task

The domain that Data ONTAP uses for NFSv4 user ID mapping by default is the NIS domain, if one is set. If an NIS domain is not set, the DNS domain is used. You might need to set the user ID domain if, for example, you have multiple user ID domains.

Step

1. Enter the following command:

```
options nfs.v4.id domain domain
```

Managing NFSv4 ACLs

You can enable, disable, set, modify, and view NFSv4 access control lists (ACLs).

Next topics

How NFSv4 ACLs work on page 47

Benefits of enabling NFSv4 ACLs on page 48

Compatibility between NFSv4 ACLs and Windows (NTFS) ACLs on page 48

How Data ONTAP uses NFSv4 ACLs to determine whether it can delete a file on page 48

Enabling and disabling NFSv4 ACLs on page 48

Setting or modifying an NFSv4 ACL on page 49

Viewing an NFSv4 ACL on page 49

How NFSv4 ACLs work

A client using NFSv4 ACLs can set and view ACLs on files and directories on the system. When a new file or subdirectory is created in a directory that has an ACL, the new file or subdirectory inherits all ACL Entries (ACEs) in the ACL that have been tagged with the appropriate inheritance flags.

For access checking, CIFS users are mapped to UNIX users. The mapped UNIX user and that user's group membership are checked against the ACL.

If a file or directory has an ACL, that ACL is used to control access no matter what protocol—NFSv2, NFSv3, NFSv4, or CIFS—is used to access the file or directory and is used even if NFSv4 is no longer enabled on the system.

Files and directories inherit ACEs from NFSv4 ACLs on parent directories (possibly with appropriate modifications) as long as the ACEs have been tagged with the appropriate inheritance flags.

When a file or directory is created as the result of an NFSv4 request, the ACL on the resulting file or directory depends on whether the file creation request includes an ACL or only standard UNIX file access permissions, and whether the parent directory has an ACL:

- If the request includes an ACL, that ACL is used.
- If the request includes only standard UNIX file access permissions, but the parent directory has an ACL, the ACEs in the parent directory's ACL are inherited by the new file or directory as long as the ACEs have been tagged with the appropriate inheritance flags.

Note: A parent ACL is inherited even if nfs.v4.acl.enable is set to off.

- If the request includes only standard UNIX file access permissions, and the parent directory does not have an ACL, the client file mode is used to set standard UNIX file access permissions.
- If the request includes only standard UNIX file access permissions, and the parent directory has a non-inheritable ACL, a default ACL based on the mode bits passed into the request is set on the new object.

The security semantics of a qtree are determined by its security style and its ACL (NFSv4 or NTFS):

For a qtree with UNIX security style:

- NFSv4 ACLs and mode bits are effective.
- NTFS ACLs are not effective.
- Windows clients cannot set attributes.

For a qtree with NTFS security style:

- NFSv4 ACLs are not effective.
- NTFS ACLs and mode bits are effective.
- UNIX clients cannot set attributes.

For a qtree with mixed security style:

- NFSv4 ACLs and mode bits are effective.
- NTFS ACLs are effective.
- Both Windows and UNIX clients can set attributes.

Note: Files and directories in a qtree can have either an NFSv4 ACL or an NTFS ACL, but not both. Data ONTAP remaps one type to the other, as necessary.

Benefits of enabling NFSv4 ACLs

There are many benefits to enabling NFSv4 ACLs.

The benefits of enabling NFSv4 ACLs include the following:

- Finer-grained control of user access for files and directories
- Better NFS security
- Improved interoperability with CIFS
- Removal of the NFS limitation of 16 groups per user

Compatibility between NFSv4 ACLs and Windows (NTFS) ACLs

NFSv4 ACLs are different from Windows file-level ACLs (NTFS ACLs), but Data ONTAP can map NFSv4 ACLs to Windows ACLs for viewing on Windows platforms.

Permissions displayed to NFS clients for files that have Windows ACLs are "display" permissions, and the permissions used for checking file access are those of the Windows ACL.

Note: Data ONTAP does not support POSIX ACLs.

How Data ONTAP uses NFSv4 ACLs to determine whether it can delete a file

To determine whether it can delete a file, Data ONTAP uses a combination of the file's DELETE bit, and the containing directory's DELETE_CHILD bit, as specified in the NFS 4.1 RFC. For more information, see the NFS 4.1 RFC.

Enabling and disabling NFSv4 ACLs

To enable or disable NFSv4 ACLs, you can set the nfs.v4.acl.enable option to on or off, respectively. This option is set to off by default.

The nfs.v4.acl.enable option controls the setting and viewing of NFSv4 ACLs; it does not control enforcement of these ACLs for access checking. For more information, see the na_options(1) man page.

Step

1. Perform one of the following actions.

If you want to	Then
Enable NFSv4 ACLs	Enter the following command:
	options nfs.v4.acl.enable on
Disable NFSv4 ACLs	Enter the following command:
	options nfs.v4.acl.enable off

Setting or modifying an NFSv4 ACL

To set or modify an NFSv4 ACL, you can use the setacl command.

NFSv4 and NFSv4 ACLs must be enabled. After they are enabled, ACLs are set or modified from clients using NFSv4.

Step

1. Enter the following command:

```
setfacl -m user:nfsuser:rwx a
```

Viewing an NFSv4 ACL

To view an NFSv4 ACL, you can use the getfacl command.

Step

1. Enter the following command:

getfacl filename

Viewing an NFSv4 ACL for file foo

```
ss> getfacl foo
# file: foo
# owner: nfs4user
# group: engr
# group: engr
user::rw-
user:nfs4user:rwx #effective:rwx
group::r-- #effective:r--
mask:rwx
other:r--
```

Running the 1s -1 command for the same file shows the following:

```
-rw-r--r-+ 1 nfs4user 0 May 27 17:43 foo
```

The + in this output indicates that the Solaris client recognized that an ACL is set on the file.

Managing NFSv4 open delegations

You can enable and disable NFSv4 open delegations and retrieve NFSv4 open delegation statistics.

Next topics

How NFSv4 open delegations work on page 50 Enabling or disabling NFSv4 read open delegations on page 50 Enabling or disabling NFSv4 write open delegations on page 51 Displaying NFSv4 open delegation statistics on page 52

How NFSv4 open delegations work

Data ONTAP supports read and write open delegations in accordance with RFC 3530.

As specified in RFC 3530, when an NFSv4 client opens a file, Data ONTAP can delegate further handling of opening and writing requests to the opening client. There are two types of open delegations: read and write. A read open delegation allows a client to handle requests to open a file for reading that do not deny read access to others. A write open delegation allows the client to handle all open requests.

Delegation works on files within any style of qtree, whether or not opportunistic lock (oplocks) have been enabled.

Delegation of file operations to a client can be recalled when the lease expires, or when the storage system receives the following requests from another client:

- Write to file, open file for writing, or open file for "deny read"
- · Change file attributes
- Rename file
- Delete file

When a lease expires, the delegation state is revoked and all of the associated state is marked "soft." This means that if the storage system receives a conflicting lock request for this same file from another client before the lease has been renewed by the client previously holding the delegation, the conflicting lock is granted. If there is no conflicting lock and the client holding the delegation renews the lease, the soft locks are changed to hard locks and will not be removed in the case of a conflicting access. However, the delegation is not granted again upon a lease renewal.

When the server reboots, the delegation state is lost. Clients can reclaim the delegation state upon reconnection instead of going through the entire delegation request process again. When a client holding a read delegation reboots, all delegation state information is flushed from the storage system cache upon reconnection. The client must issue a delegation request to establish a new delegation.

Enabling or disabling NFSv4 read open delegations

To enable or disable NFSv4 read open delegations, you can set the nfs.v4.read_delegation option to on or off, respectively. By default, this option is set to off.

By enabling read open delegations, you can eliminate much of the message overhead associated with the opening and closing of files. The disadvantage of enabling read open delegations is that the server and its clients must recover delegations after the server reboots or restarts, a client reboots or restarts, or a network partition occurs.

Step

1. Perform one of the following actions.

If you want to	Then
Enable read open delegations	Enter the following command:
	options nfs.v4.read_delegation on
Disable read open delegations	Enter the following command:
	options nfs.v4.read_delegation off

The open delegation options take effect as soon as they are changed. There is no need to reboot or restart NFS.

Enabling or disabling NFSv4 write open delegations

To enable or disable write open delegation, you can set the nfs.v4.write_delegation option to on or off, respectively. By default, this option is off.

By enabling write open delegations, you can eliminate much of the message overhead associated with file and record locking in addition to opening and closing of files. The disadvantage of enabling write open delegations is that the server and its clients must perform additional tasks to recover delegations after the server reboots or restarts, a client reboots or restarts, or a network partition occurs

Step

1. Perform one of the following actions.

If you want to	Then
Enable write open delegations	Enter the following command:
	options nfs.v4.write_delegation on
Disable write open delegations	Enter the following command:
	options nfs.v4.write_delegation off

The open delegation options take effect as soon as they are changed. There is no need to reboot or restart NFS

Displaying NFSv4 open delegation statistics

To display information about NFSv4 open delegation requests, you can use the nfsstat command.

Results returned by the nfsstat command include open delegation requests that have been granted as well as requests that have been denied due to an error.

For information about open delegation requests that your storage system has denied, view the system log file.

Next topics

Displaying NFSv4 open delegation statistics for all clients on page 52 Displaying NFSv4 open delegation statistics for a specific client on page 52 Displaying NFSv4 open delegation statistics for a vFiler unit on page 53 Displaying NFSv4 open delegation statistics for a storage system on page 53

Displaying NFSv4 open delegation statistics for all clients

To display NFSv4 open delegation information for all clients, you can enter the nfsstat -1 command

Step

1. Enter the following command:

```
nfsstat -1 count
```

The storage system returns individual NFSv4 open delegation statistics for each client up to the count you specify. If you do not specify a count, the storage system returns statistics for the first 256 clients in order of the total NFS operations performed by each client.

Displaying NFSv4 open delegation statistics for a specific client

To display NFSv4 open delegation information for a specific client, you can use the nfsstat -h command.

Step

1. Enter the following command:

```
nfsstat -h hostname or ip_address
```

The storage system returns individual NFSv4 open delegation statistics for the specified client.

Displaying NFSv4 open delegation statistics for a vFiler unit

To display NFSv4 open delegation statistics for a vFiler unit, you can run the nfsstat -d command in the vFiler unit's context.

Step

1. Enter the following command:

```
vfiler run filername nfsstat -d
```

Displaying NFSv4 open delegation statistics for a storage system

To display NFSv4 open delegation information for a storage system, you can enter the nfsstat -d command.

Step

1. Enter the following command:

```
nfsstat -d
```

The storage system returns the total number of NFSv4 open delegations handled by the storage system, including current NFSv4 open delegations and any that have been recalled. To view only current NFSv4 open delegations handled by the storage system, use the lock status command.

Configuring NFSv4 file and record locking

You can configure NFSv4 file and record locking by specifying the locking lease period and grace period.

Next topics

```
About NFSv4 file and record locking on page 53
Specifying the NFSv4 locking lease period on page 54
Specifying the NFSv4 locking grace period on page 54
```

About NFSv4 file and record locking

For NFSv4 clients, Data ONTAP supports the NFSv4 byte-range file-locking mechanism, maintaining the state of all file locks under a lease-based model.

In accordance with RFC 3530, Data ONTAP "defines a single lease period for all state held by a[n] NFS client. If the client does not renew its lease within the defined period, all state associated with the client's lease may be released by the server." The client can renew its lease explicitly or implicitly by performing an operation, such as reading a file.

Furthermore, Data ONTAP defines a grace period, which is a period of special processing in which clients attempt to reclaim their locking state during a server recovery.

_	4
•	7
_7	-

Term	Definition (see RFC 3530)
lease	The time period in which Data ONTAP irrevocably grants a lock to a client.
grace period	The time period in which clients attempt to reclaim their locking state from Data ONTAP during server recovery.
lock	Refers to both record (byte-range) locks as well as file (share) locks unless specifically stated otherwise.

Data ONTAP maintains a maximum of 64K file-locking states in configurations that are not active/ active configurations and 32K file-locking states in configurations that are active/active configurations. Of these states, Data ONTAP maintains a maximum of 16K file-locking states for a single client.

Note: During recovery, Data ONTAP must wait for the lease period plus the grace period to expire before it can grant new lock requests.

Specifying the NFSv4 locking lease period

To specify the NFSv4 locking lease period (that is, the time period in which Data ONTAP irrevocably grants a lock to a client), you can set the nfs.v4.lease_seconds option.

By default, this option is set to 30. The minimum value for this option is 10. The maximum value for this option is the locking grace period, which you can set with the locking.lease_seconds option.

As specified in RFC 3530, "short leases are good for fast server recovery," whereas "longer leases are kinder and gentler to large internet servers handling very large numbers of clients."

Step

1. Enter the following command:

```
options nfs.v4.lease_seconds n
n is the lease period, in seconds.
```

Specifying the NFSv4 locking grace period

To specify the NFSv4 locking grace period (that is, the time period in which clients attempt to reclaim their locking state from Data ONTAP during server recovery), you can set the locking.grace_lease_seconds option. Note that this option specifies both the locking lease period and the grace period.

By default, this option is set to 45.

Step

1. Enter the following command:

options locking.grace_lease_seconds n

n is the grace period, in seconds.

Flushing the name server database cache

You can use the nfs nsdb flush command to clear specific or all entries from the name server database (NSDB) cache.

About this task

If the environment uses NFSv4 or RPCSEC GSS with Kerberos for authentication to the storage system, string names are used as user/group identifiers. These string names have to be translated to their appropriate UNIX credentials in the form of UID/GIDs. This translation uses external name server lookup.

For performance optimization, NSDB caches the results of the name server lookup operations. If you have modified users credential information in the name service, the change might not take effect immediately. This can happen if the NSDB has cached user information from before the change and the cached entry has not expired yet. Flushing the NSDB cache removes the outdated information.

Step

1. Perform one of the following actions.

If you want to	Then
Flush all entries	Enter the following command:
	nfs nsdb flush -a
Flush entries specified by user name	Enter the following command:
	nfs nsdb flush -U username1[,username2,]
Flush entries specified by user ID	Enter the following command:
	nfs nsdb flush -u userID1[,userID2,]
Flush entries specified by group name	Enter the following command:
	nfs nsdb flush -G groupname1[,groupname2,]
Flush entries specified by group ID	Enter the following command:
	nfs nsdb flush -g groupID1[,groupID2,]

Supporting PC-NFS clients

To support PC-NFS clients, you can enable the pcnfsd daemon, create PC-NFS user entries in the storage system's local files, and define the umask for files and directories that PC-NFS users create on the storage system.

Next topics

How the penfsd daemon works on page 56

Enabling or disabling the penfsd daemon on page 56

Creating PC-NFS user entries in the storage system's local files on page 57

How umask works with NFS file permissions on page 57

Defining the umask for files and directories that PC-NFS users create on page 58

How the pcnfsd daemon works

Data ONTAP's penfsd daemon provides authentication services for clients using PC-NFS version 1 or 2. Authenticated PC-NFS users can mount file system paths on your storage system just like NFS users. The pcnfsd daemon does not support printer service.

When the penfsd daemon receives an authentication request, it can use local files or NIS maps to validate the user's password. The local file used can be the /etc/shadow file or /etc/passwd file. The NIS maps used can be passwd.adjunct or passwd.byname. When the shadow source is available. Data ONTAP uses it. The shadow source contains encrypted user information, instead of the password database.

The following list describes how the penfsd daemon uses local files or NIS maps for authenticating both PC-NFS version 1 and version 2 users:

If a shadow source is available, Data ONTAP uses the /etc/shadow file or the passwd.adjunct NIS map to determine the user's password.

If a shadow source is not available, Data ONTAP uses the /etc/passwd file or the passwd.byname NIS map to determine the user's user ID (UID), primary group ID (GID), and password.

When the pcnfsd daemon receives a PC-NFS version 2 authentication request, it looks up the /etc/ group file or the group. byname NIS map to determine all the groups to which the user belongs.

Enabling or disabling the penfsd daemon

To enable or disable the pcnfsd daemon, you can set the pcnfsd enable option to on or off, respectively.

Before you begin

NFS must be enabled on the storage system before you can enable the pcnfsd daemon.

About this task

You must enable the pcnfsd daemon if you want the storage system to authenticate PC-NFS users when they try to mount file system paths on the storage system. If you want another computer to authenticate users, you do not need to enable the penfsd daemon. Users authenticated by other computers can access file system paths on the storage system just like users authenticated by the storage system.

Step

1. Perform one of the following actions.

If you want to	Then
Enable the pcnfsd daemon	Enter the following command:
	options pcnfsd.enable on
Disable the pcnfsd daemon	Enter the following command:
	options pcnfsd.enable off

Creating PC-NFS user entries in the storage system's local files

To create PC-NFS user entries in the storage system's local files, you can copy the /etc/passwd, / etc/shadow, and /etc/group files to the storage system from a UNIX host that properly authenticates all of the PC-NFS users

About this task

You must create PC-NFS user entries in the storage system's local files if you want to use local files to authenticate PC-NFS users and determine group membership.

Step

1. Copy the /etc/passwd, /etc/shadow, and /etc/group files to the storage system from a UNIX host that properly authenticates all of the PC-NFS users.

How umask works with NFS file permissions

Before defining the umask for files and directories, you need to understand how the umask is used to calculate file permissions.

The permissions for each file are defined by three octal values, which apply to owner, group, and other. When a PC-NFS client creates a new file, Data ONTAP subtracts the umask, which is a threedigit octal number you define, from 666. The resulting octal digits are used as file permissions.

By default, the umask is 022, which means that the effective octal digits for permissions are 644. These permissions enable the file owner to read and write the file, and enable the group and others to read the file.

The following table provides the description for each digit in the umask.

Digit in the umask	Description
0	Read and write permissions
2	Write permission
4	Read-only permission
6	No permission

Defining the umask for files and directories that PC-NFS users create

Unlike NFS users, PC-NFS users cannot execute the UNIX umask command to set the file mode creation mask (umask), which determines the default file permissions. However, Data ONTAP enables you to define the umask for all PC-NFS users by setting the pcnfsd.umask option.

Step

1. Enter the following command:

options pcnfsd.umask umask

umask is a three-digit octal number.

Supporting WebNFS clients

To support WebNFS clients, you can enable the WebNFS protocol and, optionally, set the WebNFS root directory.

About this task

If you enable the WebNFS protocol, WebNFS client users can specify a URL starting with nfs:// to transfer a file from the storage system.

Next topics

Enabling or disabling the WebNFS protocol on page 59 Setting a WebNFS root directory on page 59

Enabling or disabling the WebNFS protocol

To enable or disable the WebNFS protocol, you can set the nfs.webnfs.enable option to on or off respectively.

Step

1. Perform one of the following actions.

If you want the Web NFS protocol	Then
Enabled	Enter the following command:
	options nfs.webnfs.enable on
Disabled	Enter the following command:
	options nfs.webnfs.enable off

Setting a WebNFS root directory

To set a WebNFS root directory, you can specify the name of the root directory; then you can enable the root directory.

About this task

If you set a root directory for WebNFS lookup, a WebNFS user can specify only the path name relative to the root directory instead of the absolute path name. For example, if the WebNFS root directory is /vol/vol1/web, a WebNFS user can access the /vol/vol1/web/specs file by specifying nfs://specs as the URL.

Next topics

Specifying the name of the WebNFS root directory on page 59 Enabling the WebNFS root directory on page 60

Specifying the name of the WebNFS root directory

You can set the nfs.webnfs.rootdir option to specify the name of the WebNFS root directory.

Step

1. Enter the following command:

```
options nfs.webnfs.rootdir directory
directory specifies the full path to the root directory.
```

Enabling the WebNFS root directory

 $To \ enable \ the \ WebNFS \ root \ directory, \ you \ can \ set \ the \ \texttt{nfs.webnfs.rootdir.set} \ option \ to \ \texttt{on}.$

You must specify the name of the WebNFS root directory before you enable it.

Step

1. Enter the following command:

options nfs.webnfs.rootdir.set on

File access using CIFS

You can enable and configure the CIFS server to let CIFS clients access files on your storage system.

Next topics

Connecting the MMC to the storage system on page 61

Configuring CIFS on your storage system on page 62

Configuring SMB on your storage system on page 70

Managing shares on page 77

Managing access control lists on page 90

Managing home directories on page 100

Managing local users and groups on page 109

Applying Group Policy Objects on page 114

Improving client performance with oplocks on page 122

Managing authentication and network services on page 125

Monitoring CIFS activity on page 137

Managing CIFS services on page 140

Troubleshooting access control problems on page 146

Using FPolicy on page 150

Connecting the MMC to the storage system

Certain CIFS management tasks can be performed using the MMC. Before performing these tasks, you need to connect the MMC to the storage system. You can connect the MMC to the storage system using the MMC menu commands.

Steps

- 1. To open the MMC on your Windows server, in Windows Explorer, right-click the icon for the local computer and select **Manage**.
- 2. On the left panel, select Computer Management.
- **3.** Select Action > Connect to another computer.

The **Select Computer** dialog box appears.

- **4.** Type the name of the storage system or click **Browse** to locate the storage system.
- 5. Click OK.

Configuring CIFS on your storage system

You can use the cifs setup command to configure CIFS on your storage system. For general information about configuring a storage system for the first time, see the Data ONTAP Software Setup Guide.

Next topics

Supported Windows clients and domain controllers on page 62

What the cifs setup command does on page 63

Setting up your system initially on page 63

Specifying WINS servers on page 64

Changing the storage system domain on page 64

Changing protocol modes on page 66

Specifying Windows user account names on page 67

Considerations when reconfiguring CIFS on page 68

Reconfiguring CIFS on your storage system on page 69

Supported Windows clients and domain controllers

Storage systems running Data ONTAP can provide services to a specific set of Windows clients and domain controllers.

Supported Windows clients:

- Windows 7
- Windows Server 2008 R2
- Windows Server 2008
- · Windows Vista
- Windows Server 2003 R2
- Windows Server 2003
- · Windows XP
- Windows 2000
- · Windows NT
- Windows 98
- Windows 95

Supported domain controllers:

- Windows Server 2008 R2
- Windows Server 2008
- Windows Server 2003 R2
- Windows Server 2003

- Windows 2000
- · Windows NT

For more information, see the Windows File Services (CIFS) Compatibility Matrix on the NOW site at *now.netapp.com/*.

There, you will find information on the following topics:

- Interoperability of Data ONTAP and new releases of Microsoft operating systems
- Data ONTAP and Microsoft Service Packs Compatibility Matrix
- Data ONTAP and Microsoft Security Updates

What the cifs setup command does

In addition to performing initial CIFS configuration, the cifs setup command enables you to perform several tasks.

With the cifs setup command, you can perform the following tasks:

- Create and name a CIFS server that your CIFS clients can access
- Join the CIFS server to a domain or workgroup, or move between them
- · Create a default set of local CIFS users and groups

Note:

If you use NIS for group lookup services, disabling NIS group caching can cause severe degradation in performance. Whenever you enable NIS lookups using the nis.enable option, you should also enable caching using the nis.group_update.enable option.

Failure to enable these two options together could lead to timeouts as CIFS clients attempt authentication.

For more information about configuring NIS, see the *Data ONTAP 7-Mode Network Management Guide*

Setting up your system initially

When a valid CIFS license is present, Data ONTAP automatically invokes the cifs setup command during the initial setup of your storage system. The cifs setup command prompts you for information such as authentication type, lookup services to be used, and so forth.

To learn about using the cifs setup command for initial CIFS configuration, including a list of the information you need when running cifs setup, see the *Data ONTAP Software Setup Guide*.

Specifying WINS servers

To specify WINS servers, you can use the cifs.wins_servers option, which is nondisruptive, or the cifs setup command, which requires you to halt CIFS services.

About this task

The WINS server list is not additive—if you are adding a third WINS server, you must enter all three IP addresses in a comma-separated list, or your existing two WINS servers are replaced by the server you intended to add.

Step

1. Perform one of the following actions.

If you want to	Then
Specify WINS servers using the cifs.wins_servers option	Enter the following command:
	options cifs.wins_servers servers servers is a comma-delimited list of WINS servers. For more information about the cifs.wins_servers option, see the options(1) man page.
Specify WINS servers using the cifs setup command	Enter the following command: cifs setup Then, when prompted, specify up to four IPv4 WINS servers. For more information about the cifs setup command, see the cifs(1) man page.

Changing the storage system domain

If you have already configured your storage system for Windows Domain authentication and you want to move the storage system to a different domain, you need to run the cifs setup command.

Before you begin

In order to perform this procedure, you need an administrative account with permissions to add any Windows server to the domain

About this task

After you change the storage system's domain, Data ONTAP updates the membership of the BUILTIN\Administrators group to reflect the new domain. This change ensures that the new domain's Administrators group can manage the storage system even if the new domain is not a trusted domain of the old domain.

Note: Until you actually put the CIFS server into a new domain or workgroup, you can cancel the CIFS setup process and return to your old settings by pressing Ctrl+C and then entering the cifs restart command

Steps

1. If CIFS is currently running, enter the following command:

cifs terminate

2. Run the cifs setup command:

cifs setup

The following prompt appears:

Do you want to delete the existing filer account information? [no]

3. To delete your existing account information, enter the following:

yes

Note: You must delete your existing account information in order to reach the DNS server entry prompt.

After deleting your account information, you are given the opportunity to rename the storage system:

```
The default name of this filer will be 'filer1'.

Do you want to modify this name? [no]:
```

4. To keep the current storage system name, press Enter; otherwise, enter **yes** and enter a new storage system name.

Data ONTAP displays a list of authentication methods:

Upon exiting, the cifs setup utility starts CIFS.

```
Data ONTAP CIFS services support four styles of user authentication.
Choose the one from the list below that best suits your situation.
(1) Active Directory domain authentication (Active Directory domains only)
(2) Windows NT 4 domain authentication (Windows NT or Active Directory domains)
(3) Windows Workgroup authentication using the filer's local user accounts
(4) /etc/passwd and/or NIS/LDAP authentication
Selection (1-4)? [1]:
```

- **5.** To accept the default method for domain authentication (Active Directory), press Enter. Otherwise, choose a new authentication method.
- **6.** Respond to the remainder of the cifs setup prompts. To accept a default value, press Enter.

7. To confirm your changes, enter the following command:

cifs domaininfo

Data ONTAP displays the storage system's domain information.

Changing protocol modes

When you have a valid CIFS license and a valid NFS license, you can change your protocol setting from unix (the default) to ntfs or mixed (multiprotocol) mode.

About this task

The protocol mode determines whether NFS, CIFS, or both clients have access to the files on the storage system.

You can set the protocol mode by running the cifs setup utility or setting the wafl.default_security_style option.

If you use cifs setup to change to multiprotocol mode, files are not immediately available to NFS clients. To make files available to NFS clients after changing to multiprotocol mode using cifs setup, you must also change the root volume qtree security style to unix; then use the chmod command to permit UNIX client access as desired.

Note: An NFS client can also get access to a file a with a Windows ACL if Data ONTAP successfully maps the user's Unix user ID to a CIFS credential and verifies (with the CIFS credential) that the user can access the file. For example, if Data ONTAP successfully maps the Unix root user to a user in the BUILTIN\Administrators group, then the Unix root user can access the same files that the Windows user can access regardless of the security style.

Step

1. Perform one of the following actions.

If you want to	Then
Change the protocol mode using the cifs setup	Enter the following commands:
utility	cifs terminate
	cifs setup Then follow the prompts to change the protocol mode.
Change the protocol mode by setting the wafl.default_security_style option	Enter the following command:
	<pre>options wafl.default_security_style {unix ntfs mixed}</pre>

Next topics

Effects of changing an NTFS-only storage system to a multiprotocol storage system on page 67 Effects of changing a multiprotocol storage system to an NTFS-only storage system on page 67

Effects of changing an NTFS-only storage system to a multiprotocol storage system

Changing an NTFS-only storage system to a multiprotocol storage system has several effects.

These are the effects:

- When you create a volume, its default security is unix.
- The wafl.default_security_style option is set to unix.

Existing ACLs and the security style of all current volumes and qtrees remain unchanged.

Note: Because the security style of the root volume remains ntfs after you change the storage system to multiprotocol, you might be denied access to the root volume when you connect from UNIX as root. You can gain access if the ACL for the root volume allows full control for the Windows user that maps to root. You can also gain access by setting the cifs.nfs_root_ignore_acl option to on.

Effects of changing a multiprotocol storage system to an NTFS-only storage system

Changing a multiprotocol storage system to an NTFS-only storage system has several effects.

These are the effects:

- If ACLs already exist on the storage system root directory (/etc) and on files in the /etc directory, the ACLs remain unchanged. Otherwise, these ACLs are created such that the BUILTIN\Administrators group has full control; any in the /etc/http directory are assigned "Everyone Read".
- ACLs on other files and directories remain unchanged.
- The security style of all volumes, except read-only volumes, is changed to ntfs.
- If the /etc directory is a qtree, its security style is changed to ntfs.
- Security style for all other qtrees remains unchanged.
- When you create a volume or qtree, its default security style is ntfs.
- The wafl.default_security_style option is set to ntfs.

Specifying Windows user account names

You can specify Windows user account names in some Data ONTAP commands and configuration files

About this task

You can specify a Windows user account name in the following places:

· As the argument to the cifs sessions command to display information about a Windows user

- In the /etc/usermap.cfg file to map Windows names to UNIX names
- In the /etc/quotas file to establish quotas for Windows users

If you specify a UNIX user name with a backslash (\) in a configuration file, Data ONTAP treats the name as a Windows user account name. For example, UNIX names such as corp\john in the /etc/quotas file are interpreted as Windows user account names.

Note: The only command in which you can specify Windows user account names using the user@domain format is the cifs setup command. There are also rules for specifying Windows user account names that are specific to particular configuration files. For additional information about those rules, see the sections in this guide that relate to the particular configuration files.

Step

1. Perform one of the following actions.

If you want to	Then
Specify a Windows name in the pre- Windows 2000 format	Append a backslash and user name to the domain name. For example, corp \john_smith.
Specify the name of a Windows 2000 user in the pre-Windows 2000 format	Use the NETBIOS form of the domain name and make sure the user name does not exceed 20 characters. For example, if john_smith@engineering.my_company.com is a Windows 2000 user, you can refer to this user as engineering\john_smith in Data ONTAP commands and configuration files
Specify a local user account	Replace the domain name with the storage system name in the pre-Windows 2000 format. For example, filer1\john_smith .

Considerations when reconfiguring CIFS

Before reconfiguring CIFS on your storage system, you need to know about prerequisites and additional important information.

Make sure to complete all of the prerequisite steps that are appropriate to your setup before you reconfigure CIFS:

- If you want to change the storage system's domain from a Windows NT domain to another
 domain as you reconfigure your storage system, the storage system must be able to communicate
 with the primary domain controller for the domain in which you want to install the storage
 system.
 - You cannot use the backup domain controller for installing the storage system.
- If you want to change the name of the storage system, you must create a new computer account on the domain controller.
 - (Required only for versions of Windows after Windows 2000.)

 Your storage system and the domain controllers in the same domain must be synchronized with the same time source. If the time on the storage system and the time on the domain controllers are not synchronized, the following error message is displayed:

```
Clock skew too great
```

For detailed steps on how to set up time synchronization services, see the Data ONTAP System Administration Guide.

If you reconfigure CIFS with the cifs setup command when a UNIX-based KDC is configured for NFS, Data ONTAP renames your UNIX keytab file to include the string UNIX. To rename the keytab file for UNIX-based KDCs, enter yes when Data ONTAP displays the following message prompt during CIFS reconfiguration:

```
*** Setup has detected that this filer is configured to support
Kerberos *** authentication with NFS clients using a non-Active
Directory KDC. If *** you choose option 1 below, to allow NFS to
use the non-Active *** Directory KDC, your existing keytab file
'/etc/krb5.keytab' will be *** renamed to '/etc/UNIX_krb5.keytab'.
NFS will be using the new keytab *** file '/etc/UNIX krb5.keytab'.
Do you want to continue. (Yes/No)?
```

If you enter yes, Data ONTAP renames the keytab file for UNIX-based KDCs; if you enter no or press Enter, Data ONTAP terminates the CIFS reconfiguration process. This renaming is needed for Kerberos multirealm configurations.

Reconfiguring CIFS on your storage system

You can reconfigure CIFS after your initial setup by running the cifs setup utility again.

About this task

The CIFS configuration settings that you can change by running cifs setup are as follows:

- WINS server addresses
- Whether your storage system is multiprotocol or NTFS-only
- Whether the storage system uses Windows domain authentication, Windows workgroup authentication, or UNIX password authentication
- The domain or workgroup to which the storage system belongs
- The storage system name

Note: If you need to terminate the cifs setup utility when it is in progress, press Ctrl-C. You then enter the cifs restart command to restart CIFS using your old configuration information.

Steps

1. Enter the following command:

```
cifs terminate
```

CIFS service is stopped for the storage system.

2. Enter the following command:

```
cifs setup
```

Data ONTAP runs the cifs setup program, which displays a list of prompts for you to reconfigure CIFS.

Configuring SMB on your storage system

In addition to the CIFS protocol, Data ONTAP supports the Server Message Block (SMB) 1.0 protocol and SMB 2.0.

Next topics

Support for the SMB 1.0 protocol on page 70

Support for the SMB 2.0 protocol on page 71

When to enable the SMB 2.0 protocol on page 73

Enabling or disabling the SMB 2.0 protocol on page 73

Enabling or disabling SMB 2.0 durable handles on page 74

Specifying the SMB 2.0 durable handle timeout value on page 74

SMB signing on page 74

Enabling or disabling the storage system's SMB 2.0 protocol client capability on page 77

Support for the SMB 1.0 protocol

Data ONTAP supports the SMB 1.0 protocol, which extends CIFS with security, file, and disk-management features.

According to the SMB protocol specification, the SMB 1.0 protocol includes the following features:

- New authentication methods, including Kerberos authentication
- Signing of messages
- Enumeration of and access to previous versions of files
- Management of files on the server by a client without the need to read all of the data from the server and write it back
- SMB connections that use direct TCP (instead of NetBIOS over TCP/UDP), NetBIOS over Internetwork Packet Exchange (IPX), NetBIOS Extended User Interface (NetBEUI), for SMB transport
- Support of client use of file system controls (FSCTLs) to request file system operations exposed by the server
- Support for retrieving extended information in response to existing commands

For more information, see the SMB 1.0 protocol specification.

Support for the SMB 2.0 protocol

In addition to the original SMB protocol, Data ONTAP supports the SMB 2.0 protocol, which provides several enhancements to the original SMB protocol.

The SMB 2.0 protocol is a major revision of the original SMB protocol in that it uses completely different packet formats; however, the SMB 2.0 protocol maintains compatibility with servers and clients that use the original SMB protocol because the client can use the original SMB protocol to negotiate the use of the SMB 2.0 protocol.

According to the SMB 2.0 protocol specification, SMB 2.0 includes the following features:

- It allows "an open to a file to be reestablished after a client connection becomes temporarily disconnected."
 - An *open* is "[a] runtime object that corresponds to a currently established access to a specific file or named pipe from a specific client to a specific server, using a specific user security context. Both clients and servers maintain opens that represent active accesses."
- It allows "the server to balance the number of simultaneous operations that a client can have outstanding at any time."
- It provides "scalability in terms of the number of shares, users, and simultaneously open files."

In particular, Data ONTAP supports the following SMB 2.0 features:

Asynchronous messages

Data ONTAP uses asynchronous messages to send an interim response to an SMB 2.0 client for any request that could potentially block a full response for an indefinite amount of time, including the following requests:

- CHANGE_NOTIFY requests
- CREATE requests blocked by an oplock revocation
- LOCK requests on an already locked byte range
- · Durable handles

Data ONTAP uses durable handles, which are file handles that persist across SMB 2.0 sessions, to prevent data loss from occurring during short network outages. When a client opens a file, it specifies whether it needs a durable handle. If so, Data ONTAP creates the durable handle. Then, if an SMB 2.0 connection goes down, Data ONTAP makes the durable handle available for reclaiming by the same user on a different SMB 2.0 connection. You can enable or disable Data ONTAP support for durable handles. You can also specify how long Data ONTAP preserves durable handles after a network failure.

· SHA-256 signing

Data ONTAP uses the SHA-256 hash function to generate the message authentication codes (MAC) for the signing of SMB 2.0 messages. If you enable SMB 2.0 signing, Data ONTAP accepts SMB 2.0 messages only if they have valid signatures.

• An algorithm for the granting of credits

According to the SMB 2.0 protocol specification, "credits limit the number of outstanding requests that a client can send to a server" and can "allow clients to send multiple simultaneous requests to the storage system."

• Compounded requests

According to the SMB 2.0 protocol specification, compounded requests are a "method of combining multiple SMB 2.0 Protocol requests... into a single transmission request for submission to the underlying transport."

Furthermore, you can enable or disable the storage system's SMB 2.0 protocol client capability, which determines whether the storage system communicates with Windows servers using the SMB 2.0 protocol or the original SMB protocol.

Note: Data ONTAP does not support symbolic links, which are an optional feature of the SMB 2.0 protocol.

For more information, see the SMB 2.0 protocol specification.

Next topics

Support for create contexts on page 72 Support for file system controls on page 72

Support for create contexts

Data ONTAP supports a subset of the create contexts defined in the SMB 2.0 protocol specification.

Data ONTAP supports the following create contexts:

- SMB2 CREATE EA BUFFER
- SMB2 CREATE SD BUFFER
- SMB2 CREATE QUERY MAXIMAL ACCESS
- SMB2 CREATE TIMEWARP TOKEN
- SMB2 CREATE DURABLE HANDLE REQUEST
- SMB2 CREATE DURABLE HANDLE RECONNECT
- SMB2_CREATE_ALLOCATION_SIZE

Data ONTAP does not support the following create contexts, for which there is no known use case:

SMB2_CREATE_QUERY_ON_DISK_ID

Support for file system controls

Data ONTAP supports a subset of the file system controls (FSCTLs) defined in the SMB 2.0 protocol specification.

Data ONTAP supports the following file system controls:

- FSCTL PIPE TRANSCEIVE
- FSCTL PIPE PEEK

- FSCTL GET DFS REFERRALS
- FSCTL SRV ENUMERATE SNAPSHOTS

Data ONTAP does not support the following file system controls, for which there is no known use case:

- FSCTL SRV REQUEST RESUME KEY
- FSCTL SRV COPYCHUNK

When to enable the SMB 2.0 protocol

There are several file-transferring and interprocess communication scenarios for which the SMB 2.0 protocol is more suited than the original SMB protocol.

According to the SMB 2.0 protocol specification, such scenarios might include those that have the following requirements:

- More scalability with regard to simultaneously open files, number of shares, and user sessions
- Quality of service guarantees with regard to number requests that can be outstanding against the server
- Stronger data integrity protection through the use of the HMAC-SHA256 hash algorithm
- Better throughput across networks with nonhomogeneous characteristics
- Better handling of intermittent losses of network connectivity

For more information, see the SMB 2.0 protocol specification.

Enabling or disabling the SMB 2.0 protocol

You can enable or disable the SMB 2.0 protocol by using the cifs.smb2.enable option. By default, this option is set to off.

About this task

If the SMB 2.0 protocol is disabled on the storage system, communication between the SMB 2.0 client and the storage system will fall back to the original SMB protocol (assuming that the SMB 2.0 client includes the original SMB dialect in its negotiate request).

Step

If you want the SMB 2.0 protocol to be	Then
Enabled	Enter the following command:
	options cifs.smb2.enable on
Disabled	Enter the following command:
	options cifs.smb2.enable off

Enabling or disabling SMB 2.0 durable handles

You can enable or disable SMB 2.0 durable handles by using the cifs.smb2.durable_handle.enable option. By default, this option is set to on.

Step

1. Perform one of the following actions:

If you want SMB 2.0 durable handles to be	Then
Enabled	Enter the following command:
	options cifs.smb2.durable_handle.enable on
Disabled	Enter the following command:
	options cifs.smb2.durable_handle.enable off

Specifying the SMB 2.0 durable handle timeout value

You can specify the SMB 2.0 durable handle timeout value by using the cifs.smb2.durable_handle.timeout option. By default, this option is 960 seconds (16 minutes).

Step

1. Enter the following command:

```
options cifs.smb2.durable_handle.timeout value
```

The value is the timeout in seconds, from 5 seconds to 4,294,967,295 seconds.

SMB signing

Data ONTAP supports SMB signing (over the SMB 1.0 protocol and over the SMB 2.0 protocol) when requested by the client. SMB signing helps to ensure that network traffic between the storage system and the client has not been compromised; it does this by preventing replay attacks (also known as "man in the middle" attacks).

When SMB signing is enabled on the storage system, it is the equivalent of the Microsoft Network server policy "Digitally sign communications (if client agrees)." It is not possible to configure the storage system to require SMB signing communications from clients, which is the equivalent of the Microsoft Network server policy "Digitally sign communications (always)." For performance reasons, SMB signing is disabled by default on the storage system.

Next topics

How client SMB signing policies affect communications with the storage system on page 75 Performance impact of SMB signing on page 76 Enforcing the requirement for clients to sign SMB 1.0 messages on page 76 Enforcing the requirement for clients to sign SMB 2.0 messages on page 76

How client SMB signing policies affect communications with the storage system

There are two SMB signing policies on Windows clients that control the digital signing of communications between clients and the storage system: "always" and "if server agrees."

Client SMB policies are controlled through security settings using the Microsoft Management Console (MMC). For more information about client SMB signing and security issues, see the Microsoft Windows documentation.

Here are descriptions of the two SMB signing policies on Microsoft Network clients:

- "Digitally sign communications (if server agrees)": This setting controls whether the client's SMB signing capability is enabled. It is enabled by default. When this setting is disabled on the client, the client communicates normally with the storage system without SMB signing, regardless of the SMB signing setting on the storage system. When this setting is enabled on the client, communications between the client and storage system proceed as follows:
 - If SMB signing is enabled on the storage system, all communications between client and storage system use SMB signing.
 - If SMB signing is not enabled on the storage system, communications proceed normally without SMB signing.
- "Digitally sign communications (always)": This setting controls whether the client requires SMB signing to communicate with a server. It is disabled by default. When this setting is disabled on the client, SMB signing behavior is based on the policy setting for "Digitally sign communications (if server agrees)" and the setting on the storage system. When this setting is enabled on the client, communications between the client and storage system proceed as follows:
 - If SMB signing is enabled on the storage system, all communications between client and storage system use SMB signing.
 - If SMB signing is not enabled on the storage system, the client rejects communication with it.

Note: If your environment includes Windows clients configured to require SMB signing, you must enable SMB signing on the storage system. If you do not, the storage system cannot serve data to these systems.

Performance impact of SMB signing

When SMB signing is enabled, all CIFS communications to and from Windows clients experience a significant impact on performance, which affects both the clients and the server (that is, the storage system running Data ONTAP).

The performance degradation shows as increased CPU usage on both the clients and the server, although the amount of network traffic does not change.

Depending on your network and your storage system implementation, the performance impact of SMB signing can vary widely; you can verify it only through testing in your network environment.

Most Windows clients negotiate SMB signing by default if it is enabled on the server. If you require SMB protection for some of your Windows clients, and if SMB signing is causing performance issues, you can disable SMB signing on any of your Windows clients that do not require protection against replay attacks. For information about disabling SMB signing on Windows clients, see the Microsoft Windows documentation.

Enforcing the requirement for clients to sign SMB 1.0 messages

You can enforce the requirement for clients to sign SMB 2.0 messages by enabling the cifs.signing.enable option. By default, this option is set to off.

Step

1. Perform one of the following actions:

If you want SMB 1.0 protocol signing to be	Then
Enforced by Data ONTAP	Enter the following command:
	options cifs.signing.enable on
Not enforced by Data ONTAP	Enter the following command:
	options cifs.signing.enable off

Enforcing the requirement for clients to sign SMB 2.0 messages

You can enforce the requirement for clients to sign SMB 2.0 messages by enabling the cifs.smb2.signing.required option. By default, this option is set to off.

Data ONTAP uses the SHA-256 hash function to generate the message authentication codes (MAC) for the signing of SMB 2.0 messages. If you set the cifs.smb2.signing.required option to on, Data ONTAP accepts SMB 2.0 messages only if they have valid signatures.

Step

If you want the requirement that clients sign SMB 2.0 messages to be	Then
Enforced by Data ONTAP	Enter the following command:
	options cifs.smb2.signing.required on
Not enforced by Data ONTAP	Enter the following command:
	options cifs.smb2.signing.required off

Enabling or disabling the storage system's SMB 2.0 protocol client capability

You can enable or disable the storage system's SMB 2.0 protocol client capability by using the cifs.smb2.client.enable option. By default, this option is set to off.

About this task

If the cifs.smb2.client.enable option is set to on, but a Windows server does not support the SMB 2.0 protocol, the storage system uses the original SMB protocol to communicate with the Windows server.

If you set the cifs.smb2.client.enable option to off, the storage system uses the original SMB protocol in new communication sessions with Windows servers; however, the storage system continues to use the SMB 2.0 protocol in existing sessions.

Step

1. Perform one of the following actions:

If you want the storage system's SMB 2.0 protocol client capability to be	Then
Enabled	Enter the following command:
	options cifs.smb2.client.enable on
Disabled	Enter the following command:
	options cifs.smb2.client.enable off

Managing shares

As an administrator, you can share directories with users on the storage system (create "shares").

Next topics

Creating a share on page 78

Displaying and changing the properties of a share on page 81 Deleting a share on page 89

Creating a share

You can create a share (that is, specify a folder, qtree, or volume for access by CIFS users) from the Microsoft Management Console (MMC) on a Windows client or from the Data ONTAP command line

Before you begin

When you create a share, you must provide all of the following information:

- The complete path name of an existing folder, gtree, or volume to be shared
- The name of the share entered by users when they connect to the share
- The access rights for the share

Note: You can select from a list of access rights, or enter specific access rights for each user or a group of users.

When you create a share, you can optionally specify a description for the share. The share description appears in the Comment field when you browse the shares on the network.

If you create the share from the Data ONTAP command line, you can also specify the following share properties:

- Group membership for files in the share
- Whether CIFS clients can follow symbolic links in the share to destinations anywhere on the same storage system
- Support for wide symbolic links in the share
- The umask value for the share
- Whether the share is browsable
- Disabling of virus scanning when files in the share are opened
- Disallowing file caching in the share by Windows clients
- Support for automatic caching of documents and programs in the share by Windows clients
- Controlling the display of shared resources with Windows Access -based Enumeration (ABE)

Note: You can change these properties at any time after you create a share.

After you finish

After you have created a share, you can specify these share properties:

• Maximum number of users who can simultaneously access the share

Note: If you do not specify a number of users, additional users are blocked only if there is no more storage system memory.

A share-level ACL

Next topics

Share naming conventions on page 79

Creating a CIFS share from the MMC on a Windows client on page 79

Creating a CIFS share from the Data ONTAP command line on page 79

Share naming conventions

Share naming conventions for Data ONTAP are the same as for Windows.

For example, share names ending with the \$ character are hidden shares, and certain share names, such as ADMIN\$ and IPC\$, are reserved.

Share names are not case-sensitive.

Creating a CIFS share from the MMC on a Windows client

You can create a CIFS share from the MMC on a Windows client by connecting the MMC to the storage system and then running the Share a Folder wizard.

Sharing a folder using the Share a Folder wizard

You can run the **Share a Folder** wizard by using the MMC.

Steps

- **1.** Connect the MMC to the storage system.
- 2. If it is not already selected, in the left pane, select Computer Management.
- 3. Select System Tools > Shared Folders > Shares > Action.

The wording of these menu items might vary slightly, depending on your Windows version.

- 4. Double-click New Share.
- 5. Follow the instructions in the **Share a Folder** wizard.

Creating a CIFS share from the Data ONTAP command line

You can create a CIFS share from the Data ONTAP command line by using the cifs shares add command.

Step

1. To create a CIFS share, enter the following command:

cifs shares -add shareName path

shareName specifies the name of the new CIFS share.

path specifies the path to the share. Path separators can be backward or forward slashes. although Data ONTAP displays them as forward slashes.

For more information, see the na cifs shares(1) man page.

Example

The following command creates a share that is accessible on the Web (a webpages share) in the /vol/voll/companyinfo directory with a maximum number of 100 users and in which all files that CIFS users create are owned by all users:

cifs shares -add webpages /vol/vol1/companyinfo -comment "Product Information" -forcegroup webgroup1 -maxusers 100

About the forcegroup option

When you create a share from the Data ONTAP command line, you can use the forcegroup option to specify that all files created by CIFS users in that share belong to the same group (that is, the "forcegroup"), which must be a predefined group in the UNIX group database.

Specifying a forcegroup is meaningful only if the share is in a UNIX or mixed qtree. There is no need to use forcegroups for shares in an NTFS atree because access to files in these shares is determined by Windows permissions, not GIDs.

If a forcegroup has been specified for a share, the following becomes true of the share:

- CIFS users in the forcegroup who access this share are temporarily changed to the GID of the forcegroup.
 - This GID enables them to access files in this share that are not accessible normally with their primary GID or UID.
- All files in this share created by CIFS users belong to the same forcegroup, regardless of the primary GID of the file owner.

When CIFS users try to access a file created by NFS, the CIFS users' primary GIDs determine access rights.

The forcegroup does not affect how NFS users access files in this share. A file created by NFS acquires the GID from the file owner. Determination of access permissions is based on the UID and primary GID of the NFS user who is trying to access the file.

Using a forcegroup makes it easier to ensure that files can be accessed by CIFS users belonging to various groups. For example, if you want to create a share to store the company's Web pages and give write access to users in Engineering and Marketing, you can create a share and give write access to a forcegroup named "webgroup1." Because of the forcegroup, all files created by CIFS users in this share are owned by the web group. In addition, users are automatically assigned the GID of the web group when accessing the share. As a result, all the users can write to this share without your managing the access rights of the Engineering and Marketing groups.

Displaying and changing the properties of a share

You can display and change share properties from the MMC or at the Data ONTAP command line.

About this task

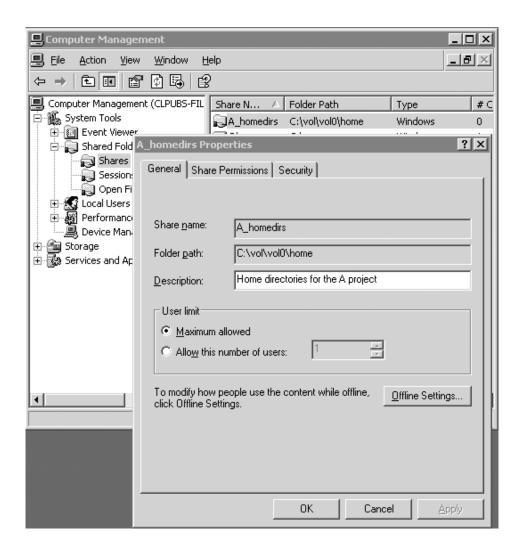
You can change the following share properties:

- The description for the share
- The maximum number of users who can simultaneously access the share
- The share-level permissions
- Whether Access-Based Enumeration is enabled or disabled

Next topics

Displaying and changing the properties of a share from the MMC on a Windows *client* on page 81

Displaying the properties of a share from the Data ONTAP command line on page 82 Changing the properties of a share from the Data ONTAP command line on page 83


Displaying and changing the properties of a share from the MMC on a Windows client

You can display and change the properties of a share from the MMC on a Windows client.

Steps

- **1.** Connect the MMC to the storage system.
- 2. If it is not already selected, in the left pane, select Computer Management.
- 3. Select System Tools > Shared Folders.
- 4. Double-click Shares.
- 5. In the right pane, right-click the share.
- **6.** Select **Properties**.

Properties for the share you selected are displayed as shown in the following example.

7. Select the **Share Permissions** tab.

The share's ACL appears.

- **8.** To change the share's ACL to include an additional group or user, select the group or user from the **Group or user names** dialog box.
- 9. Change the permissions in the Permissions for group or user name dialog box.

Displaying the properties of a share from the Data ONTAP command line

You can display the properties of a share from the Data ONTAP command line by using the cifs shares command.

Step

1. Enter the following command:

cifs shares sharename

sharename is the name of a single share. If you omit sharename, the properties of all shares are displayed.

Data ONTAP displays the share name, the path name of the directory that is shared, the share description, and the share-level ACL.

Changing the properties of a share from the Data ONTAP command line

You can change the properties of a share from the Data ONTAP command line by using the cifs shares command.

Step

1. Enter the following command:

```
cifs shares -change sharename {-browse | -nobrowse} {-comment desc | -nocomment} {-maxusers userlimit | -nomaxusers} {-forcegroup groupname | -noforcegroup} {-widelink | -nowidelink} {-symlink_strict_security | -nosymlink_strict_security} {-vscan | -novscan} {-vscanread | -novscanread} {-umask mask | -noumask {-no_caching | -manual_caching | -auto_document_caching | -auto_program_caching}
```

For more information, see the na_cifs_shares(1) man page.

Note: You can use the question mark and asterisk characters as wildcards in the *sharename* to change the properties of multiple shares simultaneously. For example, to disable virus scanning of any file that a client opens in any share, enter the following command:

```
cifs shares -change * -novscan
```

Specifying -nocomment, -nomaxusers, -noforcegroup, and -noumask clears the share's description, maximum number of users, forcegroup, and umask values, respectively.

Next topics

Enabling or disabling boundary checking for symbolic links from a share on page 84

Enabling or disabling wide symbolic links from a share on page 84

Specifying permissions for newly created files and directories in a share on page 85

Enabling or disabling browsing on page 86

Enabling or disabling virus scanning on page 86

Enabling or disabling caching on page 87

Setting client-side caching properties for a share on page 88

About access-based enumeration on page 88

Enabling or disabling access-based enumeration on page 88

Executing access-based enumeration commands from a Windows client on page 89

Enabling or disabling boundary checking for symbolic links from a share

You can disable boundary checking for symbolic links from a share to allow CIFS clients to follow symbolic links in that share to destinations anywhere on the same storage system.

By default, boundary checking for symbolic links is enabled to prevent users from accessing files outside the share.

If boundary checking is disabled, the storage system checks the share permissions of only the share that has the symbolic link.

Step

1. Perform one of the following actions.

If you want boundary checking for symbolic links from a share to be	Then
Disabled	On the Data ONTAP command line, enter the following command:
	<pre>cifs shares -change sharename - nosymlink_strict_security</pre>
Enabled	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename - symlink_strict_security

Enabling or disabling wide symbolic links from a share

You can enable wide symbolic links from a share if you want to allow CIFS clients to follow absolute symbolic links to destinations outside the share or storage system. By default, this feature is disabled.

Step

If you want to	Then
Enable wide symbolic links from a	On the Data ONTAP command line, enter the following command:
share	cifs shares -change sharename -widelink
Disable wide symbolic links from a	On the Data ONTAP command line, enter the following command:
share	cifs shares -change sharename -nowidelink

Note: You can also enable wide symbolic links from a share by specifying the -widelink option when you create the share.

After you enable wide symbolic links from a share, you need to create Widelink entries in the /etc/ symlink.translations file to specify how the storage system determines the destination represented by each wide symbolic link.

Specifying permissions for newly created files and directories in a share

You can specify the permissions of newly created files and directories in a share having mixed or UNIX gtree security style by setting the share's umask option.

You must specify the share's umask option as an octal (base-8) value. The default umask value is 0.

Note: The value of a share's umask option does not affect NFS.

Step

1. Perform one of the following actions.

If you want to specify the permissions for newly created	Then
Files and directories	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename -umask mask mask mask is an octal value that specifies the default permissions for newly created files and directories. Alternatively, set the umask option when you create the share.
Files, overriding the value of the share's umask option	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename -file_umask mask mask is an octal value that specifies the default permissions for newly created files, overriding value of the umask share option. Alternatively set the file_mask option when you create the share.
Directories, overriding the value of the share's umask option	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename -dir_umask mask mask is an octal value that specifies the default permissions for newly created directories, overriding value of the umask share option. Alternatively, set the dir_mask option when you create the share.

Example

To turn off write access for "group" and "other" permissions when a file is created in a share, enter the following command:

dir umask 022

Enabling or disabling browsing

You can enable or disable browsing to allow users to see or prevent users from seeing a specific share.

You must enable the -browse option on each share for which you want to enable browsing

Step

1. Perform one of the following actions.

If you want to	Then
Enable browsing on a specific share (has no effect if the cifs.enable_share_browsing option is on)	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename - browse
Disable browsing on a specific share	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename - nobrowse
Enable browsing on all shares	On the Data ONTAP command line, enter the following command:
	options cifs.enable_share_browsing on
Disable browsing on all shares	On the Data ONTAP command line, enter the following command:
	options cifs.enable_share_browsing off

For more information, see the na options(1) man page.

Enabling or disabling virus scanning

You can enable or disable virus scanning on one or more shares to increase security or performance, respectively.

By default, Data ONTAP scans any file that a client opens for viruses.

Step

If you want to	Then
Enable virus scanning of all files that a client opens	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename -vscan
Disable virus scanning of all file that a client opens	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename -novscan
Enable virus scanning of read-only files that a client opens	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename -vscanread
Disable virus scanning of read-only files that a client opens	On the Data ONTAP command line, enter the following command:
	cifs shares -change sharename -novscanread

Note: You can also disable virus scanning for a share when you create the share by specifying the -nvscan or -nvscanread option.

For more information about specifying virus scanning for CIFS shares, see the Data ONTAP Data Protection Online Backup and Recovery Guide.

Enabling or disabling caching

You can enable or disable caching to allow or prevent clients from caching files on a share.

You can specify whether clients must manually select files for caching; and, if not, whether Data ONTAP automatically caches programs, user files, or both in accordance with client settings. By default, clients must manually select files for caching.

Step

If you want to	Then	
Disable caching	On the Data ONTAP command line, enter the following command:	
	cifs shares -change sharename -nocaching	
Enable manual caching	On the Data ONTAP command line, enter the following command:	
	cifs shares -change sharename -manual_caching	
Enable automatic caching	On the Data ONTAP command line, enter the following command:	
of documents	cifs shares -change sharename -auto_document_caching	

If you want to	Then	
\mathcal{E}	On the Data ONTAP command line, enter the following command:	
of programs	cifs shares -change sharename -auto_program_caching	

Note: When you create a share, you can override the default caching option (-manual_caching) by specifying the -nocaching, -auto_document_caching, or -auto_program_caching option.

Setting client-side caching properties for a share

You can set client-side caching properties for a share using the Computer Management application on Windows 2000, XP, and 2003 clients. For more information, see the Microsoft Windows online Help system.

About access-based enumeration

When access-based enumeration (ABE) is enabled on a CIFS share, users who do not have permission to access a shared folder or file underneath it (whether through individual or group permission restrictions) do not see that shared resource displayed in their environment.

Conventional share properties allow you to specify which users (individually or in groups) have permission to view or modify shared resources. However, they do not allow you to control whether shared folders or files are visible to users who do not have permission to access them. This could pose problems if the names of shared folders or files describe sensitive information, such as the names of customers or products under development.

Access-based Enumeration (ABE) extends share properties to include the enumeration of shared resources. ABE therefore enables you to filter the display of shared resources based on user access rights. In addition to protecting sensitive information in your workplace, ABE enables you to simplify the display of large directory structures for the benefit of users who do not need access to your full range of content.

Enabling or disabling access-based enumeration

You can enable or disable access-based enumeration (ABE) to allow or prevent users from seeing shared resources that they do not have permission to access.

By default, ABE is disabled.

Step

If you want to	Then	
Enable ABE	On the Data ONTAP command line, enter the following command:	
	cifs shares -change sharename -accessbasedenum	

If you want to	Then	
Disable ABE	On the Data ONTAP command line, enter the following command:	
	cifs shares -change sharename -noaccessbasedenum	

Note: You can also enable ABE when you create a share by specifying the -accessbasedenum option.

Executing access-based enumeration commands from a Windows client

You can execute access-based enumeration (ABE) commands from a Windows client using the abecmd command to enable or disable ABE for shares.

Before executing ABE commands from a Windows client, you must enable ABE in Data ONTAP.

Step

1. From a Windows client that supports ABE, enter the following command:

```
abecmd [/enable | /disable] [/server filername] {/all | ShareName}
```

For more information about the abecmd command, see your Windows client documentation.

Deleting a share

You can delete a share from the MMC or the Data ONTAP command line.

Next topics

Deleting a share from the MMC on page 89
Deleting a share from the Data ONTAP command line on page 90

Deleting a share from the MMC

You can delete a share from the MMC.

Steps

- 1. Connect the MMC to the storage system.
- 2. If it is not selected already, in the left pane, select Computer Management.
- 3. Select System Tools > Shared Folders.
- 4. Double-click Shares.
- 5. In the right pane, right-click the share; then select **Stop Sharing**.
- **6.** In the confirmation box, select **Yes**.

The MMC deletes the share.

Deleting a share from the Data ONTAP command line

You can use the cifs shares command to delete a share from the Data ONTAP command line.

Step

1. Enter the following command:

```
cifs shares -delete [-f] sharename
```

-f option forces all files closed on a share without prompting. This is useful when using the command in scripts.

sharename specifies the name of the share you want to delete.

Managing access control lists

You can display and change share-level ACLs from the MMC or the command line. You can change file-level ACLs from the command line only.

Next topics

About share-level ACLs on page 90

Displaying and changing a share-level ACL on page 91

Displaying and changing a file-level ACL on page 97

Specifying how group IDs work with share-level ACLs on page 99

About share-level ACLs

When a CIFS user tries to access a share, Data ONTAP always checks the share-level ACL to determine whether access should be granted, regardless of the security style of the qtree containing the share.

A share-level ACL (access control list) consists of a list of access control entries (ACEs). Each ACE contains a user or group name and a set of permissions that determines user or group access to the share.

A share-level ACL only restricts access to files in the share; it never grants more access than the file-level ACLs.

You can change a share-level ACL to give users greater or fewer access rights to the share.

About this task

After you create a share, by default, the share-level ACL gives read access to the standard group named Everyone. Read access in the ACL means that all users in the domain and all trusted domains have read-only access to the share.

You can change a share-level ACL using the MMC on a Windows client or the Data ONTAP command line.

If you use the MMC, remember these guidelines:

- You can specify only Windows permissions.
- The user and group names specified must be Windows names.
- The share-level ACL must not have UNIX-style permissions.

If you use the Data ONTAP command line, remember these guidelines:

- You can specify either Windows permissions or UNIX-style permissions.
- The user and group names can be Windows or UNIX names.
- If the storage system is authenticated by the /etc/passwd file, the user or group name in the ACL is assumed to be a UNIX name. If the storage system is authenticated by a domain controller, the name is at first assumed to be a Windows name, but if the name is not found on the domain controller, the storage system tries to look up the name in the UNIX name database.

Next topics

Adding a user or group to a share-level ACL from the MMC on a Windows client on page 91 Displaying and changing a share-level ACL from the MMC on a Windows client on page 93 Removing a user or group from a share-level ACL using the MMC on a Windows client on page 95

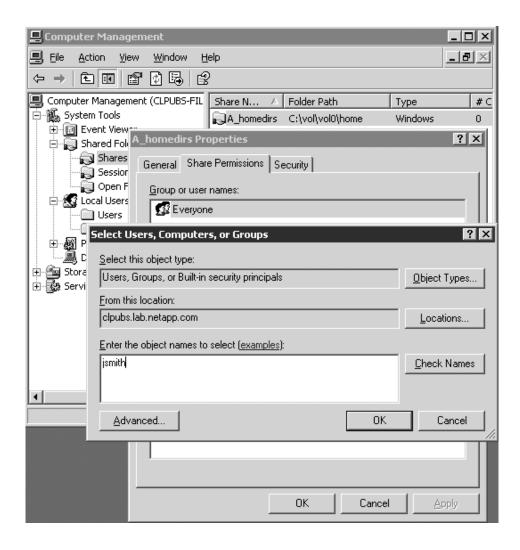
Changing a share-level ACL from the Data ONTAP command line on page 95

Removing a user or group from a share-level ACL using the Data ONTAP command line on page 96

Specifying whether NFSv3 and NFSv4 clients display Windows ACL permissions based on minimum or maximum access on page 96

Adding a user or group to a share-level ACL from the MMC on a Windows client

You can add a user or group to an ACL from the MMC on a Windows client.


Steps

1. Connect the MMC to the storage system.

- **2.** If it is not already selected, in the left pane, select **Computer Management**.
- 3. Select System Tools > Shared Folders.
- 4. Double-click Shares.
- 5. In the right pane, right-click on the share.
- 6. Select Properties.
- 7. Select the **Share Permissions** tab.

The share's ACL appears.

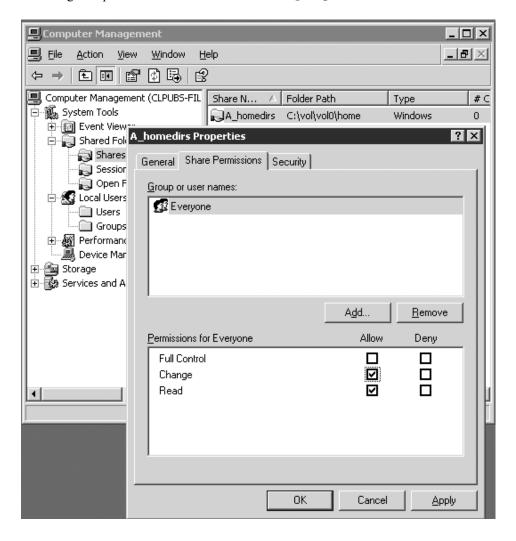
- 8. Click Add.
- **9.** In the "Select Users, Computers, or Groups" window, enter the name of the user in the "Enter the object names to select" box.

10. Click OK.

The ACL now contains the new user or group.

Displaying and changing a share-level ACL from the MMC on a Windows client

You can display and change a share-level ACL from the MMC on a Windows client.


Steps

- 1. Connect the MMC to the storage system.
- 2. If it is not already selected, in the left pane, select Computer Management.

- 3. Select System Tools > Shared Folders.
- 4. Double-click Shares.
- 5. In the right pane, right-click on the share.
- 6. Select Properties.
- 7. Select the **Share Permissions** tab.

The share's ACL appears.

8. To change the ACL for a group or user, select the group or user from the "Group or user names" box and change the permissions in the "Permissions for group or user name" box.

Removing a user or group from a share-level ACL using the MMC on a Windows client

You can remove a user or group from a share-level ACL using the MMC on a Windows client.

Steps

- **1.** Connect the MMC to the storage system.
- 2. If it is not already selected, in the left pane, select Computer Management.
- 3. Select System Tools > Shared Folders.
- 4. Double-click Shares.
- 5. In the right pane, right-click on the share.
- **6.** Select **Properties**.
- 7. Select the Share Permissions tab.

The share's ACL appears.

- **8.** Select the user or group.
- 9. Click Remove.

The ACL no longer contains the user or group.

Changing a share-level ACL from the Data ONTAP command line

You can change a share-level ACL from the Data ONTAP command line by using the cifs access command.

Step

1. Enter the following command:

```
cifs access share [-g] user rights
```

share is the name of the share (you can use the * and ? wildcards).

user is the name of the user or group (UNIX or Windows).

If user is a local group, specify the storage system name as the domain name (for example, toaster\writers).

rights are the access rights. For Windows users, you specify one of these choices of access rights: No Access, Read, Change, Full Control. For UNIX users, you specify one of these choices of access rights: r (read), w (write), x (execute).

Use the -g option to specify that user is the name of a UNIX group.

Examples

The following example grants Windows read access to the Windows user ENGINEERING \mary on the share releases:

cifs access releases ENGINEERING\mary Read

The following example grants UNIX read and execute access to the user *john* on the accounting share:

cifs access accounting john rx

The following example grants full access to the UNIX group wheel on the sysadmins share:

cifs access sysadmins -g wheel Full Control

Removing a user or group from a share-level ACL using the Data ONTAP command line

You can remove a user or group from an ACL using the Data ONTAP command line.

Step

1. Enter the following command:

cifs access -delete share [-g] user

share is the name of the share (you can use the * and? wildcards).

user is the name of the user or group (UNIX or Windows).

If user is a local group, specify the storage system name as the domain name (for example, toaster\writers).

Use the -g option to specify that user is the name of a UNIX group (that is, that user is not a UNIX user, Windows user, or Windows group).

Example: Deleting an ACL entry for ENGINEERING\mary from the releases share

cifs access -delete releases ENGINEERING\mary

Specifying whether NFSv3 and NFSv4 clients display Windows ACL permissions based on minimum or maximum access

To specify that NFSv3 and NFSv4 clients should display Windows ACL permissions (not UNIX or NFSv4 ACL permissions) based on the minimum access granted by the Windows ACL, you can set the nfs.ntacl_display_permissive_perms option to on. Otherwise, you can set the option to off. By default, this option is off.

In versions of Data ONTAP earlier than 7.2.1, the permissions displayed to NFSv3 and NFSv4 clients on files were based on the maximum access granted by the Windows ACL. However, starting in Data ONTAP 7.2.1, the permissions displayed to NFSv3 and NFSv4 clients on files are based on the minimum access granted by the Windows ACL to any user.

Step

1. Enter the following command:

```
options nfs.ntacl_display_permissive_perms {on | off}
```

Displaying and changing a file-level ACL

You can change a file-level ACL to control whether specific users and groups have access to the file.

About this task

Permission settings for files and directories are stored in file-level ACLs. These ACLs follow the Windows 2000 NTFS security model. For files that have NTFS-style security, CIFS users can set and display file-level ACLs from their PC. All files in an NTFS-style qtree and some files in a mixed qtree might have NTFS-style security.

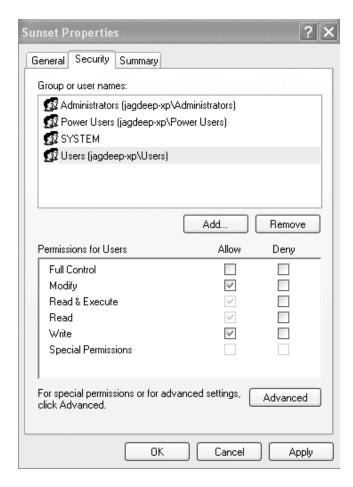
Files in a FAT (file allocation table) file system do not have ACLs; they use UNIX permissions. When viewed from a CIFS client, files without ACLs will not display the Security tab in the file Properties window.

The file system (FAT or NTFS) for a given resource depends upon the storage system authentication method and gtree style for that resource, as shown in the following table.

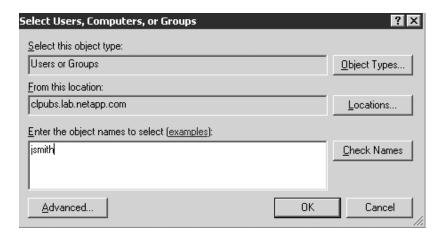
Qtree style and authentication method	File system
UNIX-style qtree and all authentication methods	FAT
Mixed or NTFS-style qtree and /etc/passwd authentication	FAT
Mixed or NTFS-style qtree and domain or workgroup authentication	NTFS

Steps

1. From the Windows desktop, right-click a file and select **Properties** from the pop-up menu.


Note: On an NT4 client, if you right-click a file that is located in a share that supports wide symbolic links and select Properties, no Security tab is displayed. You can set security using a security tool such as eacls. Alternatively, you can either access files from a Windows 2000 client or access files using shares that don't support wide symbolic links. You can have two different shares on the same directory, one that supports wide symbolic links and one that does not, and use the share that does not support wide symbolic links when setting security.

2. Click the Security tab.


Note: Depending on authentication method and qtree style, the Security tab might not be present.

3. Select the user or the group whose permissions you want to display from the "Group or user names" box.

The permissions for the group or the user you selected are displayed in the "Permissions for user or group" box.

4. To add a user or a group to the file, click **Add**, then, in the "Select Users, Computers, or Groups" window, enter the name of the user or the group in the "Enter the object names to select" box.

A user or a group is added to the ACL.

Specifying how group IDs work with share-level ACLs

If a share contains files with UNIX-style security and if you want to use the share-level ACL to control access by UNIX groups, you must decide whether you want Data ONTAP to grant user access to files based on group ID.

About this task

If a share named specs exists in a UNIX-style qtree and you want two UNIX groups, engineering and marketing, to have full access to the share, you give rwx permissions to these groups at the share level

Suppose in this share, a file owned by the engineering group is named draft and it has the following permissions:

```
draft rwxr-x---
```

When a member of engineering tries to access the draft file, the share-level ACL gives this user unrestricted access to the specs share, and access to the draft file is determined by the access rights assigned to the engineering group (r-x, in this example).

However, when a member of marketing tries to access the draft file, access is denied because the UNIX-style file permissions grant nonmembers of engineering no access to the file. To make the draft file readable by the marketing group, you need to change the file-level permissions to the following settings:

```
draft rwxr-xr-x
```

The disadvantage of these permissions is that in addition to marketing, all UNIX users can read the file, which creates a security problem.

To solve this problem, you can configure Data ONTAP to disregard the GID when granting access.

If you configure Data ONTAP to disregard the user's GID when granting access, all users who are not the file's owner are considered members of the UNIX group that owns the file. In the preceding example, permissions that apply to the engineering group also apply to members of marketing who try to access the file. That is, both engineering members and marketing members have the r-x permissions to the draft file.

By default, Data ONTAP considers the user's GID before granting access. This default configuration is useful if either of the following statements is true:

- The share does not contain files with UNIX-style security.
- You do not use a share-level ACL to control any UNIX group's access.

Step

1. Perform one of the following actions.

If, when granting user access, you want to	Then
Disregard the user's GID	Enter the following command:
	options cifs.perm_check_use_gid off
Consider the user's GID	Enter the following command:
	options cifs.perm_check_use_gid on

Managing home directories

You can create user home directories on the storage system and configure Data ONTAP to automatically offer each user a home directory share.

About this task

From the CIFS client, the home directory works the same way as any other share to which the user can connect.

Each user can connect only to his or her home directories, not to home directories for other users.

Next topics

About home directories on the storage system on page 101

How Data ONTAP matches a directory with a user on page 101

How symbolic links work with home directories on page 102

Specifying home directory paths on page 103

Displaying the list of home directory paths on page 104

Specifying the naming style of home directories on page 104

Creating directories in a home directory path (domain-naming style) on page 105 Creating directories in a home directory path (non-domain-naming style) on page 106 Creating subdirectories in home directories when a home directory path extension is used on page 106

Syntax for specifying a home directory using a UNC name on page 107
Enabling users to access other users' home directories on page 107
Accessing your CIFS home directory using a share alias on page 108
Enabling or disabling wide symbolic links from a share on page 84
Disabling home directories on page 109

About home directories on the storage system

Data ONTAP maps home directory names to user names, searches for home directories that you specify, and treats home directories slightly differently than regular shares

Data ONTAP offers the share to the user with a matching name. The user name for matching can be a Windows user name, a domain name followed by a Windows user name, or a UNIX user name. Home directory names are not case-sensitive.

When Data ONTAP tries to locate the directories named after the users, it searches only the paths that you specify. These paths are called home directory paths. They can exist in different volumes.

The following differences exist between a home directory and other shares:

- You cannot change the share-level ACL and the comment for a home directory.
- The cifs shares command does not display the home directories.
- The format of specifying the home directory using the Universal Naming Convention (UNC) is sometimes different from that for specifying other shares.

If you specify /vol/vol1/enghome and /vol/vol2/mktghome as the home directory paths, Data ONTAP searches these paths to locate user home directories. If you create a directory for jdoe in the /vol/vol1/enghome path and a directory for jsmith in the /vol/vol2/mktghome path, both users are offered a home directory. The home directory for jdoe corresponds to the /vol/vol1/enghome/jdoe directory, and the home directory for jsmith corresponds to the /vol/vol2/mktghome/jsmith directory.

How Data ONTAP matches a directory with a user

You can specify the naming style of home directories to determine how Data ONTAP matches a directory with a user.

These are the naming styles that you can choose from, and some information about each style:

- Windows name—Data ONTAP searches for the directory whose name matches the user's Windows name.
- Hidden name—If the naming style is hidden, users connect to their home directories using their Windows user name with a dollar sign appended to it (name\$), and Data ONTAP searches for a directory that matches the Windows user name (name).

- Windows domain name and Windows name—If users from different domains have the same user name, they must be differentiated using the domain name.
 - In this naming style, Data ONTAP searches for a directory in the home directory path that matches the domain name. Then it searches the domain directory for the home directory that matches the user name.
 - Example: To create a directory for engineering\jdoe and a directory for marketing\jdoe, you create the two directories in the home directory paths. The directories have the same names as the domain names (engineering and marketing). Then you create user home directories in these domain directories.
- Mapped UNIX name—If the naming style is UNIX, Data ONTAP searches for the directory that
 matches the user's mapped UNIX name.
 - Example: If John Doe's Windows name jdoe maps to the UNIX name johndoe, Data ONTAP searches the home directory paths for the directory named johndoe (not jdoe) and offers it as the home directory to John Doe.

If you do not specify a home directory naming style, Data ONTAP uses the user's Windows name for directory matching. This is the same style used by versions of Data ONTAP prior to version 6.0.

How symbolic links work with home directories

The way symbolic links work depends on the home directory naming style.

If you do not specify a naming style, Data ONTAP follows any symbolic link that points to a directory outside the home directory path to locate a home directory.

Example: Suppose the home directory path is /vol/vol0/eng_homes. To locate the home directory for jdoe, Data ONTAP searches for /vol/vol0/eng_homes/jdoe, which can be a symbolic link pointing to a directory outside the home directory path, such as /vol/vol1/homes/jdoe.

If you specify a home directory naming style, by default a symbolic link works only if the symbolic link points to a directory in the home directory path.

Example: Suppose the home directory path is /vol/vol0/eng_homes and you use the Windows naming style. To locate the home directory for jdoe, Data ONTAP searches for /vol/vol0/eng_homes/jdoe. If the path is a symbolic link, the user can access the home directory only if the target of the symbolic link resides in the home directory path. For example, the symbolic link works if it points to the /vol/vol0/eng_homes/john directory; it does not work if it points to the /vol/vol1/homes/john directory.

Note: You can change the default storage system settings to allow CIFS clients to follow symbolic links to destinations outside the home directory path.

Because Data ONTAP now supports home directories in different volumes, you do not need to use symbolic links as home directory names. However, Data ONTAP continues to support symbolic links as home directory names for backward compatibility.

Specifying home directory paths

Data ONTAP searches the home directory paths in the order you specify for the directory that matches the user name. You can specify home directory paths by editing the /etc/cifs_homedir.cfg file.

About this task

You can specify multiple home directory paths. Data ONTAP stops searching when it finds the matching directory.

You can add an extension to the home directory path if you do not want users to access the top level of their home directories. The extension specifies a subdirectory that is automatically opened when users access their home directories.

You can change the home directory paths at any time by changing the entries in the <code>cifs_homedir.cfg</code> file. However, if a user has open files in a home directory path that you remove from the list, Data ONTAP displays a warning message and requests a confirmation for the change. Changing a directory path that contains an open file terminates the connection to the home directory.

Data ONTAP creates a default cifs_homedir.cfg file in the /etc directory when CIFS starts, if the file does not already exist. Changes to this file are processed automatically whenever CIFS starts. You can also process changes to this file by using the cifs homedir load command.

Steps

- 1. Create directories to use as home directory paths. For example, in the /vol/vol0 volume, create a directory named enghome.
- 2. Open the /etc/cifs_homedir.cfg file for editing.
- Enter the home directory path names created in Step 1 in the /etc/cifs_homedir.cfg file, one entry per line, to designate them as the paths where Data ONTAP searches for user home directories.

Note: You can enter up to 1,000 path names.

4. Enter the following command to process the entries:

```
cifs homedir load [-f]
```

The -f option forces the use of new paths.

Displaying the list of home directory paths

You can use the cifs homedir command to display the current list of directory paths.

Step

1. Enter the following command:

cifs homedir

Note: If you are using the hidden naming style for home directories, when you display the list of home directory paths, Data ONTAP automatically appends a dollar sign to the home directory name (for example, name\$).

Result

If you are using the hidden naming style for home directories, home directories are not displayed in the following cases:

- In DOS, when you use the net view \\filer command
- In Windows, when you use an Explorer application to access the storage system and display home directory folders

Specifying the naming style of home directories

You can specify the naming style used for home directories by setting the cifs.home_dir_namestyle option.

Step

1. Enter the following command:

```
options cifs.home_dir_namestyle {ntname | hidden | domain | mapped | ""}
```

Use nt name if the home directories have the same names as the Windows user names.

Use hidden if you want to use a Windows user name with a dollar sign (\$) appended to it to initiate a search for a home directory with the same name as the Windows user name.

Use domain if you want to use the domain name in addition to the Windows user name to search for the home directory.

Use mapped if the home directories have the UNIX user names as specified in the usermap.cfg file.

Use " " if you do not want to specify a name style and want Data ONTAP to match home directories to users by following any symbolic link that points to a directory outside the home directory path to locate a home directory.

By default, the cifs.home_dir_namestyle option is "".

Creating directories in a home directory path (domain-naming style)

If the cifs.home_dir_namestyle option is domain, you can create home directories by editing the /etc/cifs_homedir.cfg, creating the directories, and setting the permissions on the directories.

Steps

 Open the /etc/cifs_homedir.cfg file and add the path that represents where the home directories will exist.

The home directories will exist within folders named for the NetBIOS domains to which each user belongs. For example, add the path /vol/vol1/homedir to the /etc/cifs_homedir.cfg file.

2. In the directory that you added to the /etc/cifs_homedir.cfg file, create a directory for each domain.

For example, if there are two domains, HQ and UK, create a /vol/vol1/homedir/hq/directory and a /vol/vol1/homedir/uk/ directory.

3. In each domain directory created in Step 2, create home directories for the users in that domain.

For example, if two users have the name jsmith and they are in the HQ domain and the UK domain, create the /vol/voll/homedir/HQ/jsmith home directory and the /vol/voll/homedir/UK/jsmith home directory.

4. Make each user the owner of his or her home directory.

For example, make HQ\jsmith the owner of the /vol/voll/homedir/HQ/jsmith home directory and UK\jsmith the owner of the /vol/voll/homedir/UK/jsmith home directory.

The user with the name HQ\jsmith can attach to the jsmith share corresponding to the /vol/vol1/homedir/HQ/jsmith home directory. The user with the name UK\jsmith can attach to the jsmith share corresponding to the /vol/vol1/homedir/UK/jsmith home directory.

5. Load the new CIFS homedir configuration into the storage system.

For example, enter the following command:

```
cifs homedir load -f
```

6. Make sure that the CIFS homedir domain name style is working by entering the following command:

```
cifs homedir showuser user_name
```

For example, enter one of the following commands:

```
cifs homedir showuser hq/jsmith cifs homedir showuser uk/jsmith
```

Creating directories in a home directory path (non-domain-naming style)

If the cifs.home_dir_namestyle option is not domain, you can create home directories by creating the directories and making the users the owners of the directories.

Steps

1. In the specified home directory paths, create home directories.

Example

For example, if there are two users, jsmith and jdoe, create the /vol/vol0/enghome/jsmith and /vol/vol1/mktghome/jdoe home directories.

Users can attach to the share that has the same name as their user name and start using the share as their home directory.

2. Make each user the owner of his or her home directory.

Example

For example, make jsmith the owner of the /vol/vol0/enghome/jsmith home directory and idoe the owner of the /vol/vol1/mktghome/jdoe home directory.

Note: If the naming style is hidden, users must enter their user name with a dollar sign appended to it (for example, name\$) to attach to their home directory.

The user with the name engineering\jsmith can attach to the share named jsmith, which corresponds to the /vol/vol0/enghome/engineering/jsmith home directory.

The user with the name marketing\idoe can attach to the share named idoe, which corresponds to the /vol/vol1/mktghome/marketing/jdoe home directory.

Creating subdirectories in home directories when a home directory path extension is used

You can create subdirectories that users can access in their home directories if you use a home directory path extension.

Step

1. For each home directory that resides in a home directory path with an extension, create a subdirectory that you want users to access. For example, if the /etc/cifs_homedir.cfg file includes the /vol/vol0/enghome/%u%/data path, create a subdirectory named data in each home directory.

Users can attach to the share that has the same name as their user name. When they read or write to the share, they effectively access the data subdirectory.

Syntax for specifying a home directory using a UNC name

The convention for specifying a home directory when using UNC depends on the home directory naming style specified by the cifs.home_dir_namestyle option.

The following table lists UNC names, with examples, for each namestyle value.

Value of cifs.home_dir_namestyle	UNC name
ntname or ""	\\filer\Windows_NT_name
	Example: \\toaster\jdoe
hidden	\\filer\Windows_NT_name\$
	Example: \\toaster\jdoe\$
domain	\\filer\~domain~Windows_NT_name
	Example: \\toaster\~engineering~jdoe
mapped	\\filer\~mapped_name
	Example: \\toaster\~jdoe

If cifs.home_dir_namestyle is domain but the UNC name in the access request does not specify a domain name, Data ONTAP assumes the domain to be the domain under which the request is sent. If you omit the domain name in the access request, you can also leave out the tilde (~) before the user name.

Example

A user named jdoe is logged in as engineering\jdoe from a PC in the engineering domain. When he tries to access his home directory using his user name in the marketing domain, he can enter either of the following commands to request access:

```
net use * \\toaster\~jdoe /user:marketing\jdoe
net use * \\toaster\jdoe /user:marketing\jdoe
```

Enabling users to access other users' home directories

Although users can only attach to their own home directories, you can allow them to access other users' home directories.

Steps

- 1. Create a share that corresponds to the path name that is either one of the following:
 - A home directory path if cifs.home_dir_name_style is not domain
 - A domain directory in the home directory path if cifs.home_dir_name_style is domain

Example: If /vol/vol0/enghome is a home directory path, use the following command:

cifs shares -add eng_dirs /vol/vol0/enghome -comment "readable engineering home directories"

2. Assign each user the appropriate access permissions to other users' home directories.

Example: Assign read-only permission to the engineering group for the engineering as follows:

```
cifs access eng dirs engineering full
```

Members of the engineering group have read-only access to all home directories in the eng_dirs share.

Accessing your CIFS home directory using a share alias

For any CIFS home directory naming style, you can connect to your own CIFS home directory using either cifs.homedir or tilde (~) share aliases.

About this task

Connecting to your own CIFS home directory can be useful when you are writing scripts.

Step

1. Access your own CIFS home directory using either cifs.homedir or tilde (~) share aliases.

```
Examples
net use * \\toaster\cifs.homedir
net use * \\toaster\~
```

Enabling or disabling wide symbolic links from a share

You can enable wide symbolic links from a share if you want to allow CIFS clients to follow absolute symbolic links to destinations outside the share or storage system. By default, this feature is disabled

Step

If you want to	Then
Enable wide symbolic links from a	On the Data ONTAP command line, enter the following command:
share	cifs shares -change sharename -widelink

If you want to	Then	
Disable wide symbolic links from a	On the Data ONTAP command line, enter the following command:	
share	cifs shares -change sharename -nowidelink	

Note: You can also enable wide symbolic links from a share by specifying the -widelink option when you create the share.

After you finish

After you enable wide symbolic links from a share, you need to create Widelink entries in the /etc/symlink.translations file to specify how the storage system determines the destination represented by each wide symbolic link.

Disabling home directories

You can stop offering home directories by deleting the /etc/cifs_homedir.cfg file. You cannot use the cifs shares -delete command to delete home directories.

Step

1. Delete the /etc/cifs_homedir.cfg file on the storage system.

Managing local users and groups

This section provides information about creating and managing local users and groups on the storage system.

Next topics

Managing local users on page 109
Managing local groups on page 111

Managing local users

Local users can be specified in user and group lists. For example, you can specify local users in file-level ACLs and share-level ACLs. You can also add local users to local groups.

Next topics

When you should create local user accounts on page 110
Displaying the storage system's authentication method on page 110
Limitations of local user accounts on page 110
Adding, displaying, and removing local user accounts on page 111

When you should create local user accounts

There are several reasons for creating local user accounts on your storage system.

- You must create local user accounts if, during setup, you configured the storage system to be a
 member of a Windows workgroup. In this case, the storage system must use the information in
 local user accounts to authenticate users.
- If your storage system is a member of a domain:
 - Local user accounts enable the storage system to authenticate users who try to connect to the storage system from an untrusted domain.
 - Local users can access the storage system when the domain controller is down or when
 network problems prevent your storage system from contacting the domain controller. For
 example, you can define a BUILTIN\Administrator account that you can use to access the
 storage system even when the storage system fails to contact the domain controller.

Note:

If, during setup, you configured your storage system to use UNIX mode for authenticating users, you should not create local user accounts. In UNIX mode, the storage system always authenticates users using the UNIX password database.

Displaying the storage system's authentication method

You can display the storage system's authentication method, and thus determine whether you should create local users and groups, by entering the cifs sessions command.

Step

1. Enter the following command:

cifs sessions

For more information, see the na cifs sessions(1) man page.

Limitations of local user accounts

There are several limitations with local user accounts.

- You cannot use User Manager to manage local user accounts on your storage system.
- You can use User Manager in Windows NT 4.0 only to view local user accounts. If you use User Manager in Windows 2000, however, you cannot use the Users menu to view local users. You must use the Groups menu to display local users.
- You can create a maximum of 96 local user accounts.

Adding, displaying, and removing local user accounts

You can add, display, and remove local user accounts with the useradmin command.

You use the useradmin command for creating, displaying, and deleting administrative users on the storage system. (You can also use this command to manage non-local users through the domainuser subcommand.) For information about how to use the useradmin command, see the section about managing local user accounts in the introduction to storage system administration in the System Administration Guide

Note: Data ONTAP keeps a single list of user accounts created by the useradmin command. The same types of information exist for local user accounts and administrative user accounts. CIFS users who have local user accounts with the appropriate Admin Roles can use Windows RPC calls to log in to the storage system. For more information, see the chapter on managing Administrator access in the *Data ONTAP System Administration Guide*.

Managing local groups

You can manage local groups to control which users have access to which resources.

About this task

A local group can consist of users or global groups from any trusted domains. Members of a local group can be given access to files and resources.

Membership in certain well-known local groups confers special privileges on the storage system. For example, members of BUILTIN\Power Users can manipulate shares, but have no other administrative capabilities.

CIFS clients display the name of a local group in one of the following formats:

- FILERNAME\localgroup
- BUILTIN\localgroup

Next topics

Adding, displaying, and removing local groups from the Data ONTAP command line on page 111
Adding a local group from the MMC on a Windows client on page 112
Adding users to a local group from the MMC on a Windows client on page 112
Removing a local group using the MMC on a Windows client on page 113
How SnapMirror works with local groups on page 113

Adding, displaying, and removing local groups from the Data ONTAP command line

You can add, display, and remove local groups from the Data ONTAP command line using the useradmin command.

For more information, see the *Data ONTAP System Administration Guide*.

Adding a local group from the MMC on a Windows client

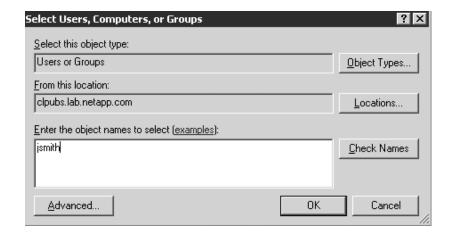
You can add a local groups from the MMC on a Windows client.

Steps

- 1. Connect the MMC to the storage system.
- 2. If it is not already selected, in the left pane, select Computer Management.
- 3. Select System Tools > Local Users and Groups.
- 4. Right-click Groups.
- 5. Select New Group.
- **6.** In the New Group box, enter the name and description of the group.
- 7. Click Create.

A new group is created on the storage system.

Adding users to a local group from the MMC on a Windows client


You can add users to a local group from the MMC on a Windows client.

Steps

- **1.** Connect the MMC to the storage system.
- 2. If it is not already selected, in the left pane, select Computer Management.
- 3. Select System Tools > Local Users and Groups.
- 4. Double-click Groups.
- 5. In the right panel, right-click on the group to which you want to add a user.
- 6. Select Add to Group.

Result: The MMC displays the Properties box.

- 7. In the Properties box, click **Add**.
- **8.** In the Select Users, Computers, or Groups window, enter the name of the user in the "Enter the object names to select" box.

9. Click OK.

The MMC adds the user to the group.

Removing a local group using the MMC on a Windows client

You can remove a local group using the MMC on a Windows client.

Steps

- **1.** Connect the MMC to the storage system.
- 2. If it is not already selected, in the left pane, select Computer Management.
- 3. Select System Tools > Local Users and Groups > Groups.
- **4.** In the right pane, right-click the local group that you want to remove.
- 5. Select Remove.
- 6. Click OK.

The MMC removes the local group.

How SnapMirror works with local groups

Because the mirror is a read-only volume and you cannot change ACLs or permissions on it, do not use local groups in ACLs for files to be replicated by SnapMirror.

If you use the SnapMirror feature to copy a volume to another storage system and the volume has an ACL for a local group, the ACL does not apply on the mirror. This is because the group is local to the source storage system.

If you want to use local groups in ACLs for files to be replicated by SnapMirror, you can do this using the MultiStore product. For more information about the MultiStore product, see the MultiStore Management Guide.

Applying Group Policy Objects

Your storage system supports Group Policy Objects (GPOs), a set of rules (known as group policy attributes) that apply to computers in an Active Directory environment.

About this task

When CIFS and GPOs are enabled on your storage system, Data ONTAP sends LDAP queries to the Active Directory server requesting GPO information. If there are GPO definitions that are applicable to your storage system, the Active Directory server returns GPO information, including:

- GPO name
- Current GPO version
- Location of the GPO definition
- Lists of UUIDs (universally unique identifiers) for GPO policy sets

Note: For more information about Windows GPOs, see the Microsoft Web site.

While not all GPOs are applicable to your storage system, the storage system is able to recognize and process the relevant set of GPOs.

The following GPOs are currently supported for your storage system:

- Startup and shutdown scripts
- Group Policy refresh interval for computer (includes random offset)
- File System security policy
- Restricted Groups security policy
- Event Log
- Auditing
- Take Ownership user right

Note: Event Log and Auditing policy settings are applied differently to storage systems than to Windows systems. Also, if you define a Take Ownership user or group list that does not contain Windows built-in administrator accounts, these administrators will lose Take Ownership privileges.

Next topics

Requirements for using GPOs with storage systems on page 115
Associating the storage system with an OU on page 115
Enabling or disabling GPO support on a storage system on page 115
Managing GPOs on the storage system on page 116

Requirements for using GPOs with storage systems

To use GPOs with your storage system, several requirements must be met.

These requirements are:

- CIFS is licensed and enabled on the storage system.
- CIFS is configured using the cifs setup command, and the setup process included joining the storage system to a Windows domain version 2000 or later.
- GPOs are configured on a Windows Active Directory server by associating the storage system with an Organizational Unit (OU).
- GPO support is enabled on the storage system.

Associating the storage system with an OU

The cifs setup process does not associate the storage system with an OU by default—you must explicitly configure the association.

Steps

- 1. On the Windows server, open the Active Directory Users and Computers tree.
- **2.** Locate the storage system's Active Directory object.
- **3.** Right-click the object and select **Move**.
- **4.** Select the OU that you want to associate with the storage system.

Result

The storage system object is placed in the selected OU.

Enabling or disabling GPO support on a storage system

You can enable or disable GPO support on the storage system by setting the cifs.gpo.enable option.

Step

1. Perform one of the following actions.

If you want to	Then
Enable GPO	Enter the following command:
	options cifs.gpo.enable on
Disable GPO	Enter the following command:
	options cifs.gpo.enable off

Managing GPOs on the storage system

You can create, display, configure the updating of, and troubleshoot the Group Policy Objects on the storage system.

Next topics

Creating File System security GPOs on page 116

Displaying current GPOs and their effects on page 120

Updating GPO settings on page 120

Troubleshooting GPO update problems on page 121

About startup and shutdown scripts on a storage system on page 122

About the /etc/ad directory on page 122

Configuration requirements for Data ONTAP pathnames on page 122

Creating File System security GPOs

You can specify GPO File System security settings directly on Data ONTAP file system objects (directories or files).

GPO File System security settings are propagated down the directory hierarchy; that is, when you set a GPO security setting on a directory, those settings are applied to objects within that directory.

Note:

These File System security settings can only be applied in mixed or NTFS volumes or qtrees. They cannot be applied to a file or directory in a UNIX volume or qtree.

File System security ACL propagation is limited to about 280 levels of directory hierarchy.

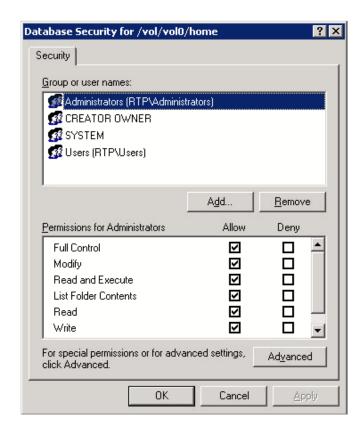
Steps

- 1. On the Windows server, open the Active Directory Users and Computers tree.
- 2. Right-click the Organization Unit (OU) that contains the storage system.
- **3.** Select the Group Policy tab, and select **New**.
- **4.** Enter a name for the new GPO.
- **5.** Highlight the new GPO and select **Edit**.

The Group Policy Object Editor appears.

- **6.** Double-click Computer Configuration > Windows Settings > Security Settings.
- 7. Right-click File System and select **Add File**.

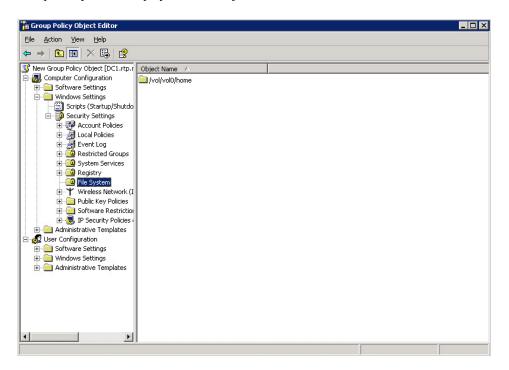
The "Add a file or folder" box appears.


Note: Do not select the option to browse the local server's drives.

8. In the Folder field, enter the storage system path on which to apply the GPO; then click **OK**.

The Database Security window opens.

9. In the Database Security window, set the permissions you want; then click OK.



The Add Object window opens.

10. In the Add Object window, select the ACL inheritance you want; then click OK.

The Group Policy Editor displays the new object name.

11. Close the Group Policy Editor and the OU Properties dialog box.

12. On the storage system, enter the following command to retrieve and apply the new GPO:

cifs gpupdate

If you do not explicitly apply the new GPO with the cifs gpupdate command, the storage system applies the new GPO the next time it queries the Active Directory server (that is, within 90 minutes).

Displaying current GPOs and their effects

You can use the cifs gpresult command to display GPOs currently in effect for the storage system and the results of those GPOs.

The cifs gpresult command simulates the output of the Windows 2000/XP gpresult.exe / force command.

Note: The cifs gpresult command displays only those group policy settings that are relevant to your storage system and current Data ONTAP release.

Step

1. Enter the following command:

```
cifs gpresult [-r] [-d] [-v]
```

- -r displays the results of applying current GPOs to the storage system.
- -v generates a verbose display, including information about applicable GPOs and the results of applying them.
- -d dumps the output from cifs gpresult -v to the /etc/ad/gpresult_timestamp file.

If you do not specify any options, the command displays information about the GPOs currently applicable to the storage system, including name, version and location.

Updating GPO settings

Data ONTAP retrieves and applies GPO changes every 90 minutes and refreshes security settings every 16 hours, but you can also force an update by entering the cifs gpupdate command.

Group Policy settings on the storage system can be updated in three ways:

- All GPOs are verified every 90 minutes. By default, Data ONTAP queries Active Directory for changes to GPOs. If the GPO version numbers recorded in Active Directory are higher than those on the storage system, Data ONTAP retrieves and applies the new GPOs. If the version numbers are the same, GPOs on the storage system are not updated.
- Security Settings GPOs are refreshed every 16 hours. Data ONTAP retrieves and applies Security Settings GPOs every 16 hours, whether or not these GPOs have changed.

Note: The 16 hour default value cannot be changed in the current Data ONTAP version. It is a Windows client default setting.

 All GPOs can be updated on demand with a Data ONTAP command. This command simulates the Windows 2000/XP gpupdate.exe /force command.

Step

1. To update Group Policy settings manually, enter the following command:

```
cifs gpupdate
```

Troubleshooting GPO update problems

If Data ONTAP does not display messages on the console indicating that it has successfully applied GPO settings—for example, after you issue the cifs gpupdate command—you should check diagnostic information about storage system GPO connections using the cifs.gpo.trace.enable option.

When updated Policy Settings have been applied on storage system GPOs, messages similar to one or both of the following appear on the storage system console:

```
CIFS GPO System: GPO processing is successfully completed.
CIFS GPO System: GPO Security processing is completed.
```

Steps

1. Enter the following command to enable GPO tracing:

```
options cifs.gpo.trace.enable on
```

2. Enter the following command to update GPO settings:

```
cifs gpupdate
```

You see messages similar to the following that include Active Directory information about GPOs:

```
CIFS GPO Trace: Site DN: cn=Default-First-Site-Name, cn=sites,CN=Configuration,DC=cifs,DC=lab,DC=company, DC=com.
CIFS GPO Trace: Domain DN: dc=CIFS,dc=LAB,dc=COMPANY, dc=COM.
CIFS GPO Trace: Filer DN: cn=user1,ou=gpo_ou,dc=cifs, dc=lab,dc=company,dc=com.
CIFS GPO Trace: Processing GPO[0]: T_sub.
CIFS: Warning for server \\LAB-A0: Connection terminated.
```

GPO trace messages are written to the console and message logs until GPO tracing is turned off.

3. Enter the following command to disable GPO tracing:

```
options cifs.gpo.trace.enable off
```

About startup and shutdown scripts on a storage system

When GPOs have been enabled on a storage system and specified in the Active Directory domain, Data ONTAP runs startup and shutdown scripts automatically whenever you start or shutdown CIFS.

The storage system accesses the scripts from the Domain Controller's sysvol directory and saves these files locally in the /etc/ad directory.

Note: Although the storage system periodically retrieves updates to the startup and shutdown scripts, startup scripts are not applied until the next time CIFS restarts.

About the /etc/ad directory

When GPO support is enabled on the storage system for the first time using the cifs.gpo.enable option, an /etc/ad directory is created.

This directory is used as a repository for the following files:

- GPO startup and shutdown scripts retrieved from the domain controller.
- Output for the cifs gpresult -d command.

Configuration requirements for Data ONTAP pathnames

The format of target file or directory names must be recognized by Data ONTAP and must be in absolute or relative form.

Here is more information about the path name forms:

- Absolute pathname—for example, /vol/vol0/home.
 When an absolute pathname is supplied, Data ONTAP applies File System security settings to the specified target file or files within the target directories. In this example, the settings are applied to the /home directory in the storage system root volume.
- Relative pathname—for example, /home.
 When a relative pathname is supplied (any pathname that does not begin with /vol), Data ONTAP applies File System security settings to any target file or directory containing the specified element. This is a convenient way to apply settings to multiple parallel targets in a single storage system; in this example, the settings are applied to all vFiler units with /home directories.

Improving client performance with oplocks

Oplocks (opportunistic locks) enable a CIFS client in certain file-sharing scenarios to perform client-side caching of read-ahead, write-behind, and lock information. A client can then read from or write

to a file without regularly reminding the server that it needs access to the file in question. This improves performance by reducing network traffic.

Next topics

Write cache data loss considerations when using oplocks on page 123
Enabling or disabling oplocks on the storage system on page 123
Enabling or disabling oplocks on a qtree on page 124
Changing the delay time for sending oplock breaks on page 124

Write cache data loss considerations when using oplocks

Under some circumstances, if a process has an exclusive oplock on a file and a second process attempts to open the file, the first process must invalidate cached data and flush writes and locks. The client must then relinquish the oplock and access to the file. If there is a network failure during this flush, cached write data might be lost.

Data loss possibilities: Any application that has write-cached data can lose that data under the following set of circumstances:

- It has an exclusive oplock on the file.
- It is told to either break that oplock or close the file.
- During the process of flushing the write cache, the network or target system generates an error.

Error handling and write completion: The cache itself does not have any error handling—the applications do. When the application makes a write to the cache, the write is always completed. If the cache, in turn, makes a write to the target system over a network, it must assume that the write is completed because if it does not, the data is lost.

Enabling or disabling oplocks on the storage system

If you enable oplocks on the storage system, you can enable or disable oplocks for individual qtrees.

About this task

CIFS oplocks on your storage system are on by default.

You might turn CIFS oplocks off under either of the following circumstances:

- You are using a database application whose documentation recommends that oplocks be turned off.
- The CIFS clients are on an unreliable network.
- You are handling critical data and you cannot afford even the slightest data loss.

Otherwise, you can leave CIFS oplocks on.

Turning CIFS oplocks on at the storage system does not override any client-specific settings. Turning CIFS oplocks off at the storage system disables all oplocks to or from the storage system. You can turn CIFS oplocks on or off at individual clients using a Windows registry setting.

Step

1. Perform one of the following actions.

If you want to	Then
Enable oplocks on the storage system	Enter the following command: options cifs.oplocks.enable on
Disable oplocks on the storage system	Enter the following command: options cifs.oplocks.enable off

Result

If the cifs.oplocks.enable option is set to on, the oplock setting per qtree takes effect. Otherwise, the oplocks for all qtrees are disabled regardless of the per-qtree oplock setting.

Enabling or disabling oplocks on a gtree

If oplocks are enabled at the storage system level, you can enable or disable oplocks on an individual qtree.

Step

1. Perform one of the following actions.

If you want to	Then	
Enable oplocks on a qtree	Enter the following command:	
	qtree oplocks qtree_name enable	
Disable oplocks on a qtree	Enter the following command:	
	qtree oplocks qtree_name disable	

Result

If the cifs.oplocks.enable option is set to on, the qtree oplocks command for a qtree takes effect immediately. If the cifs.oplocks.enable option is off, the qtree oplocks command does not take effect until the option is changed to on.

Changing the delay time for sending oplock breaks

If a client that owns a file oplock sends a file open request, it is temporarily vulnerable to a "race condition" that can occur if the storage system requests an oplock break. To prevent this condition, the storage system delays sending an oplock break according to the delay time value (in milliseconds) specified by the cifs.oplocks.opendelta option.

About this task

By default, the default delay time is 0 milliseconds. If your storage system must support some older Microsoft Windows clients, including Microsoft Windows NT 4.0 without the latest Service Pack

and Microsoft Windows NT 3.5.1, you should keep this default value to prevent the performance problem described in Microsoft Knowledge Base article 163525.

If you don't have clients running older version of Windows, you can set the delay time to another value, such as 8. This means that after the storage system receives or responds to a request to open a file, the storage system will make sure that 8 milliseconds have elapsed before sending an oplock break to that client.

You might want to increase the delay time if you issue the cifs stat command and the output shows a non-zero value for the OpLkBkNoBreakAck field.

You might also want to increase the delay time for sending oplock breaks if you see syslog messages similar to the following:

```
Mon Jan 21 15:18:38 PST [CIFSAdmin:warning]: oplock break timed out to station JOHN-PC for file \\FILER\share\subdir\file.txt
```

Step

1. Enter the following command:

```
options cifs.oplocks.opendelta time
```

time is the delay in milliseconds.

Setting the cifs.oplocks.opendelta option postpones the sending of oplock break requests to clients that have just opened files. You must consult technical support if you are considering setting this value higher than 35.

Managing authentication and network services

This section provides information about storage system authentication, as well as procedures for managing the older NetBIOS protocol.

Next topics

Understanding authentication issues on page 126

Setting the storage system's minimum security level on page 127

Preventing Kerberos passive replay attacks on page 128

Selecting domain controllers and LDAP servers on page 128

Using null sessions to access storage in non-Kerberos environments on page 132

Creating NetBIOS aliases for the storage system on page 135

Disabling NetBIOS over TCP on page 136

Understanding authentication issues

Your storage system supports three types of authentication: UNIX authentication, Windows workgroup authentication, and Kerberos authentication.

Next topics

About UNIX authentication on page 126
About Windows workgroup authentication on page 126
About Kerberos authentication on page 127

About UNIX authentication

Using UNIX mode, authentication is performed using entries in the /etc/passwd file and/or using NIS/LDAP-based authentication.

Using UNIX authentication:

- Passwords are sent "in the clear" (unencrypted).
- Authenticated users are given credentials with no unique, secure user identification (SID).
- The storage system verifies the received password against a "hash" (algorithmic variant) of the user password. Passwords are not stored on the storage system.

In order to provide UNIX client authentication, the following items must be configured:

- Client information must be in the storage system /etc/passwd file.
- Client information must be entered in NIS and/or LDAP.
- Windows client registries must be modified to allow plain text passwords.

Because UNIX authentication transmits unencrypted passwords, Windows clients require a registry edit to enable them to send passwords without encryption. Clients that are not properly configured to send clear text passwords to the storage system might be denied access and display an error message similar to the following:

```
System error 1240 has occurred.
The account is not authorized to login from this station.
```

Refer to Microsoft support for information to enable plain text passwords, to allow clients to use LINIX authentication

About Windows workgroup authentication

Workgroup authentication allows local Windows client access.

The following facts apply to workgroup authentication:

- Does not rely upon a domain controller
- Limits storage system access to 96 local clients

• Is managed using the storage system's useradmin command

About Kerberos authentication

With Kerberos authentication, upon connection to your storage system, the client negotiates the highest possible security level.

There are two primary levels of security that can be chosen:

- Basic (Windows NT-4) security, based on network services such as NT Lan Manager (NTLM), lanman, and netlogon
- Extended security using Windows 2000 Kerberos implementation

Note: Extended security features are only available to clients that are members of a Windows Active Directory domain.

Setting the storage system's minimum security level

To set the storage system's minimum security level (that is, the minimum level of the security tokens that the storage system accepts from clients), you can set the cifs.LMCompatibilityLevel option. By default, this option is set to 1.

Step

1. Enter the following command:

options cifs.LMCompatibilityLevel minimum_level

minimum_level is the minimum level of security tokens that the storage system accepts from clients, as defined in the following table.

Value	Description
1 (default)	The storage system accepts LM, NTLM, and NTLMv2 session security; it also accepts NTLMv2 and Kerberos authentication.
2	The storage system accepts NTLM and NTLMv2 session security; it also accepts NTLMv2 and Kerberos authentication. The storage system denies LM authentication.
3	The storage system accepts NTLMv2 session security; it also accepts NTLMv2 and Kerberos authentication. The storage system denies LM and NTLM authentication.
4	The storage system accepts NTLMv2 and Kerberos authentication. The storage system denies LM, NTLM, and NTLMv2 session security.
5	The storage system accepts Kerberos authentication only.

Preventing Kerberos passive replay attacks

Kerberos replay cache prevents passive replay attacks by storing user authenticators on the storage system for a short time, and by insuring that authenticators are not reused in subsequent Kerberos tickets.

About this task

Storing and comparing Kerberos authenticators can result in a substantial performance penalty for certain storage system workloads. For this reason, the kerberos.replay_cache.enable option is set to off by default.

Step

1. Perform one of the following actions.

If you want to	Then	
Enable the Kerberos replay cache	Enter the following command:	
	option kerberos.replay_cache.enable on	
Disable the Kerberos replay cache	Enter the following command:	
	option kerberos.replay_cache.enable off	

Selecting domain controllers and LDAP servers

Upon startup and as listed below, your storage system searches for a Windows domain controller. This section describes how and when the storage system finds and selects domain controllers.

About this task

The storage system searches for domain controllers where any of the following is true:

- The storage system has been started or rebooted.
- A cifs resetdc command has been issued.
- Four hours have elapsed since the last search.

Note: Active Directory LDAP servers are searched for under the same conditions.

Next topics

Understanding the domain controller discovery process on page 129

Specifying a list of preferred domain controllers and LDAP servers on page 130

Deleting servers from the prefdc list on page 130

Troubleshooting domain controller connections on page 131

Displaying a list of preferred domain controllers and LDAP servers on page 131

Understanding the domain controller discovery process

When you run CIFS in a domain environment, your storage system attempts to rediscover all of its domain controllers by sending Internet Control Message Protocol (ICMP) packets once every 4 hours. Doing so enables it to verify that the current domain controller is still accessible and to prioritize available domain controllers using the packets' round trip time.

If a storage system loses access to a domain controller with a very good connection rate and has to go to a backup domain controller with a slower rate, it will rediscover domain controllers every 2 minutes until a better connection is found. Once that connection is found, it will connect to the new domain controller and return to sending discovery packets every 4 hours.

The following table describes the domain controller discovery process and priority groups. The storage system only progresses to a lower priority group when it has failed to contact all domain controllers in the priority group above it.

Note: For Active Directory environments, site membership is one of the criteria by which the storage system selects domain controllers (when no preferred domain controllers are available). Therefore, it is important to have the Sites and Services configured properly (with the storage system's subnet information included in the same site as the storage system).

Domain controller category	Priority groups: Order in which domain controllers are selected
Preferred: Controllers in the prefdc list	Group 1: Preferred domain controllers are selected by the order in which the controllers appear in the prefdc list.
Favored: Controllers that share the same Active Directory site membership with the storage system (This category is empty for storage systems in Windows NT environments.)	Group 2: Domain controllers from which a response was received within one second of being pinged, in the order of fastest response time. Group 3: Domain controllers that did not respond within one second, but share the same subnet as the storage system. Group 4: All non-local domain controllers that did not respond within one second of being pinged
Other: Controllers that do not share site membership	Group 5: Domain controllers from which a response was received within one second of being pinged, in the order of fastest response time. Group 6: Domain controllers that did not respond within one second, but share the same subnet as the storage system. Group 7: All non-local domain controllers that did not respond within one second of being pinged.

Note: Because site membership is specific to Active Directory domains, there is no "favored" category for Windows NT4 domains, nor for mixed-mode domains in which your storage system is configured as an NT4 server. In these environments, all domain controllers found through discovery are assigned the category "other."

Specifying a list of preferred domain controllers and LDAP servers

You can specify a list of preferred domain controllers and LDAP servers using the cifs prefdc add command.

Step

1. Enter the following command:

```
cifs prefdc add domain address [address ...]
```

domain specifies the domain for which you want to specify domain controllers or LDAP servers. address specifies the IP address of the domain controller or LDAP server.

Example

The following command specifies two preferred domain controllers for the lab domain.

```
cifs prefdc add lab 10.10.10.10 10.10.10.11
```

Note: To force the storage system to use a revised list of preferred domain controllers, or LDAP servers, use the cifs resetdc command.

Deleting servers from the prefdc list

You can use the cifs prefdc delete command to delete servers form the prefdc list.

Steps

1. Enter the following command:

```
cifs prefdc delete domain
```

domain is the domain where the preferred domain controller or LDAP server resides.

2. Enter the following command:

```
cifs resetdc [domain]
```

domain is the domain you specified in step one.

The storage system disconnects and searches for a domain controller in the order specified in the revised prefdc list.

Example

The following command deletes lab from the prefdc list:

cifs prefdc delete lab

After you delete a domain from the prefdc list, you should always perform a cifs resetdc command to update the storage system's available domain controller information, as described in step 2 of the following procedure. The storage system does not update the domain controller discovery information from network services when the prefdc list is updated. Failure to reset the domain controller information can cause a connection failure, if the storage system tries to establish a connection with an unavailable domain controller (or LDAP server).

Note: Storage systems do not automatically perform domain controller discovery operations upon restart; restarting the storage system does not update the available domain controller and LDAP server list.

Troubleshooting domain controller connections

Because of potential security concerns, you should verify that any increase in ICTM Echo Request (ping) traffic is associated with a change in domain controller connection status.

Steps

1. Verify that any ICMP packets you see are going between the storage system and known domain controllers. To display a list of known domain controllers, enter the following command:

cifs domaininfo

- 2. Confirm that the storage system pings these devices only once every 4 hours.
- **3.** If you are seeing more frequent ping traffic, search your logs for any message indicating loss of connectivity with a domain controller.
- **4.** You can also temporarily enable the cifs.trace_dc_connection option to log all domain controller address discovery and connection activities on the storage system. This allows you to correlate the packets that you are seeing with the times that the storage system reports when it is rediscovering domain controllers. For usage information about this option, see the options(1) man page.

Displaying a list of preferred domain controllers and LDAP servers

You can use the cifs prefdc print command to display a list of preferred domain controllers and LDAP servers.

Step

1. Enter the following command:

cifs prefdc print [domain]

domain is the domain for which you want to display domain controllers. When a domain is not specified, this command displays preferred domain controllers for all domains.

Example

The following command displays the preferred controllers and LDAP servers for the lab domain:

cifs prefdc print lab

Reestablishing the storage system connection with a domain

You can use the cifs resetde command to reestablish the storage system connection with a domain

The following procedure disconnects your storage system from the current domain controller and establishes a connection between the storage system and a preferred domain controller. It also forces domain controller discovery, updating the list of available domain controllers.

Note: This procedure also reestablishes LDAP connections, and performs LDAP server discovery.

Step

1. Enter the following command:

cifs resetdc [domain]

domain is the domain from which the storage system disconnects. If it is omitted, the storage system disconnects from the domain in which the storage system is installed.

Example

The following command disconnects the storage system from the domain controllers for the lab domain:

cifs resetdc lab

Using null sessions to access storage in non-Kerberos environments

Null session access provides permissions for network resources, such as storage system data, to client-based services running under the local system. A null session occurs when a client process uses the "system" account to access a network resource. Null session configuration is specific to non-Kerberos authentication

Next topics

How the storage system provides null session access on page 133

Granting null users access to file system shares on page 133
Using machine accounts to access storage in Kerberos environments on page 134

How the storage system provides null session access

Because null session shares do not require authentication, clients that require null session access must have their IP addresses mapped on the storage system.

By default, unmapped null session clients can access certain Data ONTAP system services, such as share enumeration, but they are restricted from accessing any storage system data.

Note: Data ONTAP supports Windows RestrictAnonymous registry setting values with the cifs.restrict_anonymous option. This allows you to control the extent to which unmapped null users can view or access system resources. For example, you can disable share enumeration and access to the IPC\$ share (the hidden named pipe share). For more information, see the options(1) man page.

Unless otherwise configured, a client running a local process that requests storage system access through a null session is a member only of nonrestrictive groups, such as "everyone." To limit null session access to selected storage system resources, you might want to create a group to which all null session clients belong; creating this group enables you to restrict storage system access and to set storage system resource permissions that apply specifically to null session clients.

Granting null users access to file system shares

You can allow access to your storage system resources by null session clients by assigning a group to be used by null session clients and recording the IP addresses of null session clients to add to the storage system's list of clients allowed to access data using null sessions

Steps

- 1. Open the /etc/usermap.cfg file.
- 2. Add an entry for each null user using the following format:

```
IPqual:"" => unixacct
```

IPqual specifies either an IP address (hostname or numeric dot-format) or a subnet (IP address + network mask); "" indicates null user; => indicates the mapping direction; and unixacct is the UNIX account (from /etc/passwd or NIS) that the mapped null user will have.

- **3.** Set the cifs.mapped_null_user_extra_group option to the group name you intend to use for null session clients.
- **4.** Set permissions to allow appropriate access rights to null session clients.

Examples 10.10.20.19:"" => exchuser 192.168.78.0/255.255.255.0:"" => iisuser

The client at IP address 10.10.20.19 is allowed null session access to the storage system. The null user account is mapped to a UNIX account called exchuser, which must exist in the / etc/passwd or NIS database.

Also, any clients establishing a connection from the 192.168.78.0 class C subnet are allowed null session access and are mapped to the UNIX account iisuser. Other null user connections to the storage system are not allowed.

Data ONTAP provides a mapping syntax in the /etc/usermap.cfg file to specify the IP address of clients allowed access to storage system resources using a null user session. Once you create a group for null users, you can specify access restrictions for storage system resources and resource permissions that apply only to null sessions.

Any null user accessing the storage system from a mapped IP address is granted mapped user permissions. Consider appropriate precautions to prevent unauthorized access to storage systems mapped with null users. For maximum protection, place the storage system and all clients requiring null user storage system access on a separate network, to eliminate the possibility of IP address "spoofing."

Using machine accounts to access storage in Kerberos environments

Machine accounts are subjected to the same Kerberos authentication as user accounts, so they do not need to be mapped on the storage system.

When authenticated using Kerberos, clients that run local processes using the "system" account assign those processes to the machine account when accessing remote resources. The machine account is assigned the computer name registered with the domain controller, followed by a dollar sign (\$).

Preventing machine accounts from accessing data

By default, machine accounts (like any other authenticated user) always have access to data shares. However, for security reasons, you might want to prevent services running on a Kerberos-enabled client from accessing data using CIFS.

Note: Disabling machine account access to data shares can cause a number of services to fail, such as offline folders and roaming profiles. Be sure to evaluate your storage system service needs before disabling machine account access.

Step

1. Enter the following command:

```
cifs access -delete share name -m
```

Note: Access to the IPC\$ share (the hidden named pipe share) cannot be changed and is always permitted.

For more information, see the cifs access(1) man page.

Creating NetBIOS aliases for the storage system

You can create NetBIOS aliases by setting the cifs.netbios_aliases option or by editing the / etc/cifs_nbalias.cfg file.

About this task

NetBIOS aliases are alternative names for your storage system. You can connect to the storage system using any of the names in the list.

With the cifs.netbios_aliases option, you can create NetBIOS aliases as a comma-separated list. This list allows up to 255 characters, including commas. The /etc/cifs_nbalias.cfg file allows up to 200 entries.

Next topics

Creating NetBIOS aliases from the command line on page 135
Creating NetBIOS aliases in the /etc/cifs_nbalias.cfg file on page 135
Displaying the list of NetBIOS aliases on page 136

Creating NetBIOS aliases from the command line

You can create NetBIOS aliases from the command line by setting the cifs.netbios_aliases option.

Steps

1. Enter the following command:

```
options cifs.netbios_aliases name,...
```

You can enter up to 255 characters, including commas.

Example

```
options cifs.netbios_aliases alias1,alias2,alias3
```

2. Enter the following command to process the entries:

```
cifs mbalias load
```

Creating NetBIOS aliases in the /etc/cifs_nbalias.cfg file

You can create NetBIOS aliases in the /etc/cifs_nbalias.cfg file.

Data ONTAP creates a default cifs_nbalias.cfg file in the /etc directory when CIFS starts, if the file does not already exist. Changes to this file are processed automatically whenever CIFS starts. You can also process changes to this file using the command cifs nbalias load.

Steps

- 1. Open the /etc/cifs_nbalias.cfg file for editing.
- 2. Enter NetBIOS aliases in the /etc/cifs_nbalias.cfg file, one entry per line.

Note: You can enter up to 200 NetBIOS aliases in the file, using either ASCII or Unicode characters

3. Enter the following command to process the entries:

cifs nbalias load

Displaying the list of NetBIOS aliases

You can display the list of NetBIOS aliases by entering the cifs nbalias command.

Step

1. Enter the following command:

cifs nbalias

Disabling NetBIOS over TCP

If NetBIOS over TCP has been disabled in your Windows 2000 network, you can use the cifs.netbios_over_tcp.enable option to disable NetBIOS over TCP on your storage system.

About this task

NetBIOS over TCP is the standard protocol used for CIFS prior to Windows 2000. The option to use this protocol, cifs.netbios_over_tcp.enable, is enabled on your storage system by default. It corresponds to the "Enable NetBIOS over TCP" setting in the Windows 2000 Advanced TCP/IP settings tab.

To verify the status of NetBIOS over TCP on your storage system, use the nbtstat command, as described in the nbtstat(1) man page.

In order to disable NetBIOS over TCP, all storage system clients must be running Windows 2000 or later. Once you disable NetBIOS over TCP, only Windows 2000 domain controllers and virus scanners can be used.

Note: Once you disable NetBIOS over TCP, clients no longer receive Data ONTAP notification messages, such as shutdown messages and vscan warnings.

Step

1. Enter the following command:

```
options cifs.netbios_over_tcp.enable off
```

Monitoring CIFS activity

This section provides information about monitoring CIFS sessions activity and collecting storage system statistics.

About this task

You can display the following types of session information:

- A summary of session information, which includes storage system information and the number of open shares and files opened by each connected user.
- Share and file information about one connected user or all connected users, which includes
 - The names of shares opened by a specified connected user or all connected users
 - The access levels of opened files
 - Security information about a specified connected user or all connected users, which includes the UNIX UID and a list of UNIX groups and Windows groups to which the user belongs.

Note: The number of open shares shown in the session information includes the hidden IPC\$ share.

Next topics

Different ways to specify a user on page 137
Displaying a summary of session information on page 138
Timing out idle sessions on page 138
Tracking statistics on page 138
Viewing specific statistics on page 139
Saving and reusing statistics queries on page 140
CIFS resource limitations on page 140

Different ways to specify a user

When displaying session information about a connected user, you can specify the user by the user name or the IP address of the workstation. In addition, if the user is connected to your storage system from a pre–Windows 2000 client, you can specify the name of the workstation.

Clients sometimes connect with an unauthenticated "null" session. Such sessions are sometimes used by clients to enumerate shares. If a client has only the null session connected to the storage system, you will see the following status message:

User (or PC) not logged in

You c

You can use the cifs sessions command to display a summary of session information.

Step

1. Enter the following command:

Displaying a summary of session information

cifs sessions

Timing out idle sessions

You can specify the amount of time that elapses (in seconds) before Data ONTAP disconnects an idle session

About this task

If a user does not have a file opened on your storage system, the session is considered idle. By default, Data ONTAP disconnects a session after it has been idle for 30 minutes.

If an idle session is disconnected, it will automatically reconnect the next time the client accesses the storage system.

Step

1. Enter the following command:

```
options cifs.idle_timeout time
```

time specifies the new idle time before disconnecting in seconds.

The new value for this option takes effect immediately.

Tracking statistics

Using the stats commands, you can view system statistics to track performance.

About this task

The stats command is not specific to CIFS-related statistics. The two stats commands that output statistics data are stats show (for real-time statistical data) and stats stop (when you are tracking statistics over a range of time). Note that the cifs stats command is still available.

The statistics displayed by the stats command are accumulated in counters. You reference a specific counter using a hierarchical name with components:

object_name:instance_name:counter_name. For example, a counter might be named system:system:cifs_ops. You can use the stats list command to determine the object_names, instance_names and counter_names available on your storage system.

The output of the stats show command provides data describing the storage system at the moment you issued the command. To track statistics over time, use the stats start command to mark the

beginning of the time period you want to track, and the stats stop command to mark the end of the time period for which you want to collect statistical data. Data ONTAP outputs the collected data as soon as you enter the stats stop command.

Data ONTAP allows you to use the stats start and stats stop commands to track different statistics concurrently. To do this, you can enter an instance (-i) argument with the stats start and stats stop commands.

For more information about usage and syntax, see the stats(1) man page.

Steps

1. Enter the following command to view a list of objects that are tracked by the stats command:

```
stats list objects
```

Data ONTAP returns a list of objects you can view using the stats show object_name

2. Enter the following command to view a list of statistics instances:

```
stats list instances
```

Data ONTAP returns a list of instances you can view using the stats show command. You can use these instances to focus the output of the stats show command.

3. Enter the following command to view a list of statistics counters:

```
stats list counters
```

Data ONTAP returns a list of counters you can view using the stats show command.

4. Enter the following command to receive a description of all counters, instances, or objects:

```
stats explain counters
```

Data ONTAP returns a description of all counters, instances, and objects you can use to focus the output of the stats show command.

Viewing specific statistics

Once you know the objects, instances, and counters you can monitor to track individual statistics, you can use them as command line arguments to focus the output of the cifs show command.

About this task

For more information, see the stats(1) man page.

Step

1. Enter the following command:

```
stats show [[object_name][:instance_name][:counter_name]]
```

Data ONTAP returns the specific statistics you request.

Saving and reusing statistics queries

You can store and reuse "preset" statistics queries you commonly perform. Preset queries are stored in XML files, in the following location and naming format: /etc/stats/preset/ preset_name.xml. For information about how to store and reuse queries, see the stats_preset(5) man page.

CIFS resource limitations

Access to some CIFS resources is limited by your storage system's memory and the maximum memory available for CIFS services.

These resources include:

- Connections
- Shares
- Share connections
- · Open files
- · Locked files
- Locks

Note: If your storage system is not able to obtain sufficient resources in these categories, contact technical support.

Managing CIFS services

This section provides information about managing CIFS services on the storage system.

Next topics

Disconnecting clients using the MMC on page 141

Disconnecting a selected user from the command line on page 141

Disabling CIFS for the entire storage system on page 142

Specifying which users receive CIFS shutdown messages on page 143

Restarting CIFS service on page 143

Sending a message to users on a storage system on page 143

Displaying and changing the description of the storage system on page 144

Changing the computer account password of the storage system on page 144

About file management using Windows administrative tools on page 145

Disconnecting clients using the MMC

You can disconnect clients using the MMC.

Steps

- **1.** Connect the MMC to the storage system.
- 2. If it is not already selected, in the left pane, select Computer Management.
- 3. Double-click System Tools > Shared Folders > Sessions.
- **4.** Perform one of the following actions:

If you want to	Then
Disconnect specific clients	a. Right-click the client's name.
	b. Select Close Session.
	c. Click OK.
Disconnect all clients	a. Right-click on Sessions.
	b. Select Disconnect All Sessions.
	c. Click Yes.

Disconnecting a selected user from the command line

You can use the cifs terminate command to disconnect a selected user from the command line.

Steps

1. To display a list of connected clients, enter the following command:

cifs sessions *

2. To disconnect a client, enter the following command:

```
cifs terminate client_name_or_IP_address [-t time]
```

client_name_or_IP_address specifies the name or IP address of the workstation that you want to disconnect from the storage system.

time specifies the number of minutes before the client is disconnected from the storage system. Entering 0 disconnects the client immediately.

Note: If you do not specify time and Data ONTAP detects an open file with the client, Data ONTAP prompts you for the number of minutes it should wait before it disconnects the client.

Example

The following command sends a message to the workstation named ismith-pc, notifying the user of the impending disconnection. Five minutes after you enter the command, jsmith-pc is disconnected from the storage system.

cifs terminate jsmith-pc -t 5

Disabling CIFS for the entire storage system

The disabling of CIFS service is not persistent across reboots. If you reboot the storage system after disabling CIFS service, Data ONTAP automatically restarts CIFS.

Steps

1. To disable CIFS service, eter the following command:

```
cifs terminate [-t time]
```

time is the number of minutes before the storage system disconnects all clients and terminates CIFS service. Entering 0 makes the command take effect immediately.

Note: If you enter the cifs terminate command without an argument and Data ONTAP detects an open file with any client, Data ONTAP prompts you for the number of minutes it should wait before it disconnects the client.

2. Perform one of the following actions:

If you want CIFS service to	Then
Restart automatically after the next storage system reboot	Do nothing.
Not restart automatically after the next storage system reboot	Rename the /etc/cifsconfig.cfg file.

Result

Data ONTAP sends a message to all connected clients, notifying the users of the impending disconnection. After the specified time has elapsed, the storage system disconnects all clients and stops providing CIFS service.

After you finish

After you disable CIFS for the entire storage system, most cifs commands become unavailable. The cifs commands you can still use with CIFS disabled are:

- cifs prefdc
- cifs restart
- · cifs setup
- · cifs testdc

Specifying which users receive CIFS shutdown messages

When you issue the cifs terminate command, by default Data ONTAP sends a message to all open client connections to notify users when CIFS service will be disconnected. You can change the default setting so that Data ONTAP never sends these messages or sends them only to connected clients that have open files.

Step

1. Enter the following command:

```
options cifs.shutdown_msg_level {0 | 1 | 2}
```

Use 0 to never send CIFS shutdown messages.

Use 1 to send messages only to connected clients that have open files.

Use 2 to send messages to all open connections, which is the default setting.

Restarting CIFS service

You can restart CIFS service by entering the cifs restart command.

Step

1. Enter the following command:

```
cifs restart
```

Result

The storage system connects to the domain controller and restarts CIFS service.

Sending a message to users on a storage system

You can send a message to all users on your storage system to tell them of important events. The message appears in an alert box on the users' computers.

About this task

Data ONTAP automatically sends a message to connected users after you enter the cifs terminate command. However, if you want to send a message without stopping CIFS service, for example, to tell users to close all files, you can use Server Manager or the Data ONTAP command line to send a message.

Some clients might not receive broadcast messages. The following limitations and prerequisites apply to this feature:

Windows 95 and Windows for Workgroups clients must have the WinPopup program configured.

- Windows 2003 and Windows XP Service Pack 2 clients must have the messenger service enabled. (By default, it is disabled.)
- Messages to users can only be seen by Windows clients connected using NetBIOS over TCP.

Note: Network configuration can also affect which clients receive broadcast messages.

Step

1. Perform one of the following actions.

If you want to	Then
Send a message to all CIFS users connected to the storage system	Enter the following command:
	cifs broadcast * "message"
Send a message to a specific CIFS user connected to	Enter the following command:
the storage system	cifs broadcast <i>client_name</i> "message"
Send a message to all CIFS users connected to a	Enter the following command:
particular volume	cifs broadcast -v volume "message"

Displaying and changing the description of the storage system

Adding an informative description enables you to distinguish your storage system from other computers on the network.

About this task

The description of your storage system appears in the Comment field when you browse the network. Initially, the storage system has no description. The description can be up to 48 characters.

Steps

1. Enter the following command to display the current description:

cifs comment

2. Enter the following command to change the description:

cifs comment "description"

Changing the computer account password of the storage system

The cifs changefilerpwd command instructs the storage system (either in an Active Directory domain or an NT4 Domain) to change its domain account password immediately. The

cifs.weekly_W2K_password_change option, when set to on, causes a storage system belonging to a Windows Active Directory domain to change its domain password once a week.

About this task

For more information, see the cifs changepassword(1) and options(1) man pages.

Steps

1. Enter the following command:

cifs changefilerpwd

The storage system responds with the following message:

```
password change scheduled.
```

The password change is scheduled, and should take place within a minute.

2. Optionally enter the following command:

```
options cifs.weekly W2K password change {on | off}
```

If the storage system belongs to a Windows Active Directory domain, it changes its domain password once a week. The password change occurs at approximately 1:00 a.m. on Sunday. The default is off.

About file management using Windows administrative tools

You can accomplish some CIFS file access management tasks by using Windows administrative tools.

The following Windows administrative tools are compatible with Data ONTAP:

- Computer Management snap-ins for Microsoft Management Console (MMC) to manage users and groups
- Microsoft Active Directory Users MMC snap-ins
- · Microsoft Event Viewer
- Microsoft Perfmon

The procedures for managing the storage system using the Microsoft administrative tools listed above are similar to those for managing a Windows server. The procedures in this chapter provide information for Data ONTAP administration tasks that differ from a Windows server.

Unlike text you enter through Windows server administration tools, the Data ONTAP command line is case-sensitive. For example, when you specify a volume name in Windows, you can type in either lowercase or uppercase letters. You cannot use Windows tools to create a qtree named Test at the same level as a qtree named TEST, because Windows tools do not make a distinction between these names. You can create and distinguish these two qtrees from the Data ONTAP command line.

The following limitations apply to NT User Manager when you use NT User Manager for your storage system:

- Although the storage system supports local users, you cannot use the New Users command on the
 User menu to create or delete local user accounts.
- The Policies menu is disabled, but some policies can be controlled through options or group membership.

The following NT Server Manager features are not supported because they are not applicable to Data ONTAP

- Stopping and starting services
- Specifying the recipients of alerts

Troubleshooting access control problems

To troubleshoot access control problems (that is, to determine why a client or user is given or denied access to a file on the storage system when you think it should not be), you can use the sectrace command.

Next topics

Adding permission tracing filters on page 146
Removing permission tracing filters on page 147
Displaying permission tracing filters on page 148
Finding out why Data ONTAP allowed or denied access on page 149

Adding permission tracing filters

You can add permission tracing filters to instruct Data ONTAP to log information in the system log about why the storage system allows or denies a client or user to perform an operation.

About this task

Adding permission tracing filters has a minor effect on storage system performance; therefore, you should add permission tracing filters for debugging purposes only. When you are done debugging, you should remove all permission tracing filters. Furthermore, the filtering criteria you specify should be as specific as possible so that Data ONTAP does not send a large number of EMS messages to the console.

Keep the following limitations in mind:

- You can add a maximum of 10 permission tracing filters per vFiler.
- You can add permission tracing filters for CIFS requests only.

Step

1. Enter the following command:

```
sectrace add [-ip ip_address] [-ntuser nt_username] [-unixuser
unix_username] [-path path_prefix] [-a]
```

ip_address specifies the IP address of the client attempting access.

nt_username specifies the Windows NT user name of the user attempting access.

unix_username specifies the UNIX user name of the user attempting access. You cannot specify a UNIX user name if you specify an NT user name.

path_prefix specifies the prefix of the path name of the files to trace access to. For example, specify /vol/vol0/home/file to trace access to all files having names that start with "file" in the /vol/vol0/home/ directory, such as /vol/vol0/home/file100 and /vol/vol0/home/ file200.

-a specifies that the storage system should trace requests that it allows as well as requests that it denies.

Examples

The following command adds a permission tracing filter to trace all access requests from a client with an IP address of 192,168.10.23 that Data ONTAP denies.

```
sectrace add -ip 192.168.10.23
```

The following command adds a permission tracing filter to trace all access requests from the UNIX user foo to the path /vol/vol0/home4 that Data ONTAP allows or denies:

```
sectrace add -unixuser foo -path /vol/vol0/home4 -a
```

Removing permission tracing filters

Because permission tracing filters have a minor impact on storage system performance, you should remove them when you are done debugging access errors.

Step

1. Perform one of the following actions:

If you want to	Then
, ,	Enter the following command:
filters	sectrace delete all

If you want to	Then
Remove one permission	Enter the following command:
tracing filter	sectrace delete index
	When you add a permission tracing filter, Data ONTAP assigns it an index between 1 and 10. <i>index</i> specifies the index of the permission tracing filter to delete.

Example

The following command removes the permission tracing filter with an index of 1:

sectrace delete 1

Displaying permission tracing filters

You can use the sectrace show command to display the permission tracing filters on a storage system or vFiler.

Step

1. Enter the following command:

sectrace show [index]

When you add a permission tracing filter, Data ONTAP assigns it an index between 1 and 10. index specifies the index of the permission tracing filter to display. If you do not specify an index, Data ONTAP displays all of the permission tracing filters.

Example

The following command displays all permission tracing filters on a storage system:

sectrace show

Data ONTAP displays all of the permission tracing filters in output like this:

```
Sectrace filter: 1
Hits: 5
Path: /vol/vol1/unix1/file1.txt
NT User: CIFS-DOM\harry
Trace DENY and ALLOW events
Sectrace filter: 2
Hits: 7
IP Addr: 10.30.43.42
Path: /vol/vol1/mixed1/dir1/file1.txt
NT User: CIFS-DOM\chris
Trace DENY and ALLOW events
Sectrace filter: 3
Hits: 1
Path: /vol/vol1/mixed1/file2.txt
```

```
NT User: CIFS-DOM\chris
Trace DENY events
```

Finding out why Data ONTAP allowed or denied access

Data ONTAP logs an EMS message to the console whenever the criteria for a permission tracing filter are met. To get more information about why Data ONTAP allowed or denied access to a particular client or user, you can use the sectrace print-status command.

Step

1. Enter the following command:

```
sectrace print-status status_code
```

status_code corresponds to the value of the "Status: " tag in the storage system log for the request that the storage system allowed or denied.

Example

Suppose you added a permission tracing filter that caused Data ONTAP to log the following EMS message to the console:

```
Thu Dec 20 13:06:58 GMT [sectrace.filter.allowed:info]: [sectrace index: 1] Access allowed because 'Read Control, Read Attributes, Read EA, Read' permission (0x20089) is granted on file or directory (Access allowed by unix permissions for group) - Status: 1:6047397839364:0:0 - 10.73.9.89 - NT user name: CIFS-DOM\harry - UNIX user name: harry(4096) - Qtree security style is MIXED and unix permissions are set on file/directory - Path: /vol/vol1/mixed1/file1.txt
```

To get more information about why Data ONTAP allowed this particular user to access this particular file, enter the following command:

```
sectrace print-status 1:6047397839364:0:0
```

Note: When invoking the sectrace print-status command, you must specify the status code from the "Status:" line of the corresponding error message.

In response, Data ONTAP provides more information, such as the following:

```
secAccess allowed because 'Traverse' permission is granted on requested path.
```

- Access allowed by unix permissions for others.
- Access allowed because requested permission is granted on file or directory.
- Access allowed by share-level ACL.
- Access allowed by unix permissions for group. trace print-status 1:6047397839364:0:0

Using FPolicy

You can use FPolicy to allow partner applications connected to your storage systems to monitor and set file access permissions.

Next topics

Introduction to FPolicy on page 150 Use of FPolicy within Data ONTAP on page 157 How to use native file blocking on page 158 How to work with FPolicy on page 162 FAQs, error messages, warning messages, and keywords on page 209

Introduction to FPolicy

An introduction to FPolicy includes the system architecture, information on how it works, FPolicy's common use cases, various FPolicy applications, and limitations of FPolicy.

Next topics

What FPolicy is on page 150 How FPolicy works on page 151 FPolicy work flowchart on page 153 FPolicy in the storage environment on page 155 What the multiple server configuration feature is on page 155 Limitations of FPolicy on page 156

What FPolicy is

FPolicy is an infrastructure component of Data ONTAP that enables partner applications connected to your storage systems to monitor and set file access permissions.

Every time a client accesses a file from a storage system, based on the configuration of FPolicy, the partner application is notified about file access. This enables partners to set restrictions on files that are created or accessed on the storage system.

FPolicy allows you to create file policies that specify file operation permissions according to file type. For example, you can restrict certain file types, such as JPEG and .mp3 files, from being stored on the storage system.

When FPolicy was first introduced in Data ONTAP 6.4, it only supported the CIFS protocol. Support for the NFS protocol was added in Data ONTAP 7.0. However, FPolicy requires CIFS to be licensed even for NFS specific events.

FPolicy determines how the storage system handles requests from individual client systems for operations such as create, open, rename, and delete. The storage system maintains a set of properties for FPolicy, including the policy name and whether that policy is active. You can set these properties for FPolicy using the storage system console commands.

The FPolicy interface is a Data ONTAP API (called ONTAPI) that runs on a Distributed Computing Environment (DCE) and uses Remote Procedure Calls (RPC). Using these tools, the external applications can register as FPolicy servers.

The FPolicy interface allows a programmer to implement sophisticated file screening functionality on a storage system or NearStore system from an external application running on a separate platform.

An application utilizing the FPolicy interface can perform the following actions:

- Register one or more FPolicy servers with one or more storage systems
- Receive notifications for file operations such as opening, creating, or renaming files
- · Block access to any file it has received a notification for

The following protocols are supported by FPolicy:

- CIFS
- NFS (version 2, version 3, version 4)

The following filters can be used by an FPolicy server:

- Protocol
- Volume name
- File extension
- Offline bit
- Operations

File screening in Data ONTAP can be enabled in two ways.

• Using external file screening software

The file screening software runs on a client that functions as a file screening server. File screening software provides flexible control and filtering of file content.

Note: For optimal performance, you should configure the FPolicy server to be on the same subnet as the storage system.

Using native file blocking
 The file screening software runs natively on the storage system. Native file blocking provides simple denial of restricted file types.

How FPolicy works

An FPolicy server should be registered with a storage system before it can be configured to send notification for access by clients using NFS and CIFS.

After registering the FPolicy server with the storage system, when a client makes a request for access to a file, the storage system notifies the FPolicy server for events that are registered for notification. The storage system sends information about client access to the FPolicy server as part of the notification sent on the client request. The information sent to the FPolicy server includes the file

name, path name, client information, protocol information, and operations requested by the client. Based on the information received and how the FPolicy server is configured, the FPolicy server responds to the client's request. The FPolicy server communicates to the storage system whether to allow or deny the request from the client.

You can use file policies to specify file or directory operations, and place restrictions on them. Upon receiving a file or directory operation request (such as open, write, create, or rename), Data ONTAP checks the file policies before permitting the operation.

If the policy specifies screening for that file based on its extension, file screening takes place either on a file screening server or on the storage system. The following list describes these methods of file screening:

- On a file screening server (using external screening software): The notification is sent to the file screening server to be screened and the file screening server, which applies rules to determine whether the storage system should allow the requested file operation. The file screening server then sends a response to the storage system to either allow or block the requested file operation.
- On the storage system (using native file blocking): The request is denied and the file operation is blocked.

Related concepts

What native file blocking is on page 157

FPolicy work flowchart

The flowchart gives an overview of the usage model for FPolicy.

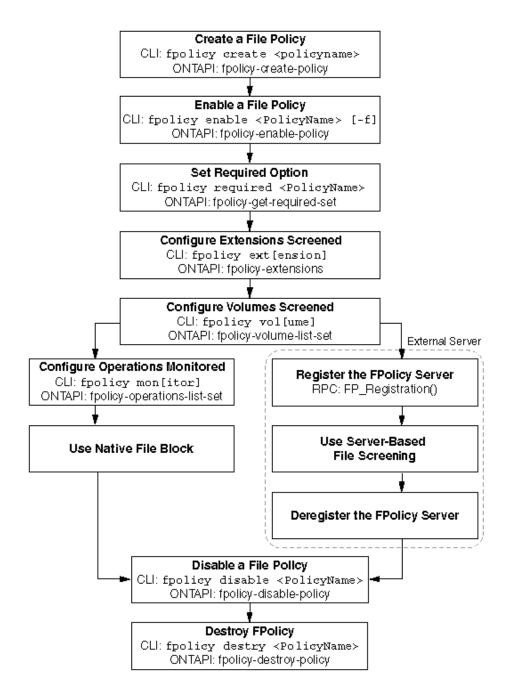


Figure 1: FPolicy flowchart

FPolicy in the storage environment

When a client requests a file, the request is sent to the Protocol Stack. If the FPolicy feature is enabled, the Protocol Stack identifies CIFS and NFS requests and marks them for FPolicy screening.

The request is then sent to the WAFL module. The WAFL module redirects the request from the storage system to the FPolicy server. The WAFL module sends the file request to the FPolicy engine.

The FPolicy engine consists of the FPolicy infrastructure, ONTAPIs and RPCs. It sends the request to the FPolicy server as an RPC call. When the FPolicy server returns the response, the FPolicy engine responds to the client request. This response is forwarded to the WAFL module which in turn forwards it to the Protocol Stack and then sends it to the client.

If the file access is allowed, the client is provided with the file. If file access is denied, an appropriate response is sent to the client. For CIFS clients, when file access is denied, the STATUS_ACCESS_DENIED error message is displayed.

The system architecture diagram provides an overview of the entire system architecture and indicates the FPolicy infrastructure in various layers of Data ONTAP.

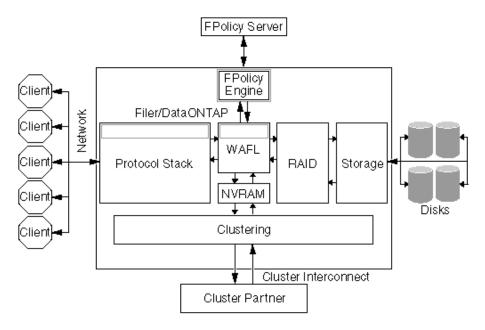


Figure 2: FPolicy in storage environment

What the multiple server configuration feature is

FPolicy supports load sharing among different servers registered for one policy. FPolicy allows more than one server to register for one policy. These servers can register as primary or secondary servers.

In a scenario where more than one FPolicy server registers to the same policy on the storage system, all FPolicy notifications for that policy are load-shared among the FPolicy servers. The storage system performs load sharing by sending successive notifications to the FPolicy server that has the least number of outstanding requests. However, FPolicy gives priority to primary servers over secondary servers. If there is a mixed configuration of both primary and secondary servers registered to a given policy, the FPolicy notifications will be distributed among the primary servers.

If no primary server is available, the secondary server shares the notifications. Once the primary server is available, the storage system sends the requests to the primary server and not to the secondary server.

If any one of the FPolicy servers hits the limit of maximum outstanding requests, which is 50, FPolicy redirects the notification to the other active servers. When all the registered servers reach this limit of maximum outstanding requests, all notifications are queued in the throttle queue.

The server configuration depends on the type of feature. For instance, features such as pass-through read, file size, and owner are server-based features. You need to enable these features on specific servers. However, features such as notification of permission changes, inode-to-file path, and offline bit are policy-wide features. That is, when you enable these features on one policy, the feature gets updated to all the FPolicy servers that use this policy.

Limitations of FPolicy

FPolicy limitations can be classified into protocol, screening and general limitations.

Following are the protocol limitations of FPolicy:

- FPolicy supports only CIFS and NFS protocols. However, there are some operations for the CIFS and NFS protocols that FPolicy does not monitor, such as, NFSv4 operations related to locking and delegation, session-related operations (SMB_COM_SESSION_SETUP_ANDX), operations not relevant to file system activity (print-related operations), and so on.
- FPolicy does not support other protocols such as FTP, HTTP, WebDAV, FileIO, and so on.
- You cannot configure CIFS and NFS operations separately on the same policy.

Following are the screening limitations of FPolicy:

- You must set up file screening on an entire volume. You cannot screen individual qtrees and directories.
- FPolicy supports screening of CIFS operation on alternate data streams. However, FPolicy does not support screening of NFS operations on alternate data streams.
- When you register multiple servers, the policy of all the servers connected changes based on the settings of the server that registers last.
- Multiple instances of FPolicy server from the same IP address cannot register to same policy.
- If the CIFS system resources used by FPolicy are exhausted, the CIFS screening by the FPolicy engine will stop.

Use of FPolicy within Data ONTAP

FPolicy can be used for native file blocking on a storage system.

What native file blocking is

Using native file blocking, you can deny any of the file or directory operations mentioned in the monitoring list.

The same set of filters and protocols that are supported by server-based file screening are also supported for native file blocking. You can configure native file blocking policy and FPolicy server-based file screening simultaneously, on different policies.

The following image displays the processing of a client request when native file blocking is enabled. The numbers depict the order of the request flow.

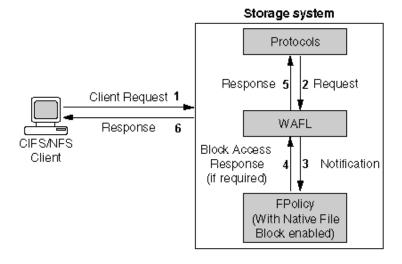


Figure 3: Native file blocking

When a CIFS or NFS client makes a request, if native file blocking is enabled, the file is screened at the storage system. If the request matches the screening requirements the request is denied.

Native file blocking can be performed on any of the following operations:

- File open
- · File create
- File rename
- File close
- · File delete
- · File read
- · File write

- · Directory delete
- Directory rename
- Directory create
- Getattr (NFS only)
- Setattr
- Create hard link (NFS only)
- Create symlink (NFS only)
- Lookup (NFS only)
- Notification of permission changes (CIFS only)
 - · Change of owner
 - Change of group
 - Change of system ACL (SACL)
 - Change of discretionary ACL (DACL)

Related concepts

How to use native file blocking on page 158

Related references

Events monitored through CIFS on page 160 Events monitored through NFS on page 161

How to use native file blocking

To use native file blocking, you first create an FPolicy and then configure FPolicy to provide notifications for certain operations. The native file blocking feature is available by default with Data ONTAP.

Native file blocking enables you to deny any of the file operations mentioned in the file screening section. Access to files with particular extensions can be blocked.

For example, to block files that contain .mp3 extensions, you configure a policy to provide notifications for certain operations with target file extensions of .mp3. The policy is configured to deny .mp3 file requests. When a client requests a file with an .mp3 extension, the storage system denies access to the file, based on the native file blocking configuration.

You can configure native file blocking and server-based file screening applications at the same time.

Note: The native file blocking feature only screens files based on the extensions and not on the content of the file.

Configuring native file blocking

To configure native file blocking, you create a policy and then configure it with a list of file extensions to block.

The CIFS protocol needs to be licensed and configured.

Steps

1. Create a file policy using the following CLI command:

fpolicy create PolicyName Policytype

Example

To create a screening policy named mp3blocker, enter the following command:

fpolicy create mp3blocker screen

FPolicy creates the file policy with the specified policy name, using the screenpolicy type.

2. Configure the policy to monitor the .mp3 extension, using the following command

fpolicy extensions include set PolicyName ext-list

Example

To configure the policy to monitor the .mp3 extension, enter the following command:

fpolicy extensions include set mp3blocker mp3

3. Set the operations and protocols monitored by the policy using the following command:

fpolicy monitor {add|remove|set} PolicyName [-p protocols] [-f] op-spec

PolicyName is the name of the policy you want to add operations to.

protocols is the set of protocols you want to enable monitoring for. Use cifs to monitor CIFS requests, nfs to monitor NFS requests, or cifs, nfs to monitor both.

The -f option forces the policy to be enabled even if there are no servers available to enforce the policy.

op-spec is the list of operations you want to add.

Example

To replace the policy .mp3blocker's list of operations monitored for CIFS and NFS operations, enter the following command:

fpolicy monitor set .mp3blocker -p cifs,nfs create,rename

Specify the create option to prevent creation of .mp3 files. In addition, to ensure that an .mp3 file is not copied onto the storage system with a different extension and renamed, also specify the rename option.

This CLI command sets specific operations to be monitored.

4. Set the required option to on, using the following command syntax:

fpolicy options PolicyName required on

Example

To enable mandatory screening on the mp3blocker policy, enter the following command:

fpolicy options mp3blockerrequired on

This CLI command makes file screening mandatory before the files can be accessed.

5. Enable the FPolicy feature using the following CLI command:

fpolicy enable PolicyName [-f]

Example

To enable the FPolicy .mp3blocker, enter the following command:

fpolicy enable mp3blocker

This CLI command enables the file policy.

On completion of the preceding steps, if a client tries to perform an operation that uses a blocked file, the operation fails and a STATUS_ACCESS_DENIED error code is sent.

Next topics

Events monitored through CIFS on page 160 Events monitored through NFS on page 161

Related concepts

How to monitor operations using FPolicy on page 206

Related tasks

Creating a file policy on page 163

Specifying mandatory file screening on page 164

Enabling or disabling the FPolicy feature on page 162

Events monitored through CIFS

FPolicy can monitor many CIFS events.

The following table lists the CIFS operations that FPolicy can monitor and a brief description of how FPolicy handles each operation.

Events	Description	
File open	Notification sent when a file is opened	
File create	Notification sent when a file is created	
File rename	Notification sent when a file name is changed	
File close	Notification sent when a file is closed	
File delete	Notification sent when a file is deleted	
File read	Notification sent when a file is read	
File write	Notification sent when a file is changed	

Events	Description	
Directory delete	Notification sent when a directory is deleted	
Directory rename	Notification sent when a directory name is changed	
Directory create	Notification sent when a directory is created	
Setattr	Notification sent when attribute information is set	

Events monitored through NFS

FPolicy can monitor many NFS events.

The following table lists the NFS operations that FPolicy can monitor, and a brief description of each operation.

Events	Description	
File open	Notification sent when a file is opened	
File create	Notification sent when a file is created	
File rename	Notification sent when a file name is changed	
File close	Notification sent when a file is closed	
File delete	Notification sent when a file is deleted	
File read	Notification sent when a file is read	
File write	Notification sent when a file is changed	
Directory delete	Notification sent when a directory is deleted	
Directory rename	Notification sent when a directory name is changed	
Directory create	Notification sent when a directory is created	
setattr	Notification sent when attribute information is set	
getattr	Notification sent when attribute information is requested	
link	Notification sent when a hard link is created	
symlink	Notification sent when a symbolic link is created	
Lookup	Notification sent when an NFS lookup occurs	

How to work with FPolicy

Using CLI commands, you can create, enable, and configure FPolicy, monitor operations, and screen files based on volumes and extensions.

Next topics

How to set up FPolicy on page 162

Events screened for NFS and CIFS clients on page 170

What a file or directory event is on page 171

What screening by volume is on page 191

What screening by extension is on page 197

How to manage the file screening server on page 204

How to monitor operations using FPolicy on page 206

What the different CLI commands are on page 208

How to set up FPolicy

FPolicy can be set up using simple CLI commands.

Next topics

Enabling or disabling the FPolicy feature on page 162

Creating a file policy on page 163

Enabling the file policy on page 164

Specifying mandatory file screening on page 164

Displaying information for a file policy on page 165

Displaying information for all file policies on page 165

Disabling a file policy on page 166

Destroying a file policy on page 166

Stopping server screening for disconnected CIFS requests on page 166

Setting a limit on simultaneous screening of CIFS requests on page 167

Setting server timeout on page 168

Setting request screening timeout on page 169

Enabling or disabling multiple open instances of the SMB named pipe on page 169

Enabling or disabling the FPolicy feature

FPolicy is enabled by default when the CIFS protocol is licensed and configured. You can set the fpolicy enable option to manually enable or disable the FPolicy feature.

Step

1. Perform one of the following actions:

If you want to	Then	
Enable FPolicy	Enter the following command:	
	options fpolicy.enable on	
Disable FPolicy	Enter the following command:	
	options fpolicy.enable off	

Disabling the FPolicy feature overrides the enable or disable settings for individual policies and will disable all policies.

Creating a file policy

To set up a file policy, you first need to create it. To create a file policy, you use the create command.

To configure policies for notifications, create a file policy. A file policy can then be configured to send notifications, to the FPolicy server, for particular file operation requests or for native file blocking.

The create command creates a new file policy with a unique policy name.

After the new file policy is created, you can set the options and determine the requests that need to be screened for certain extensions.

Step

1. To create a file policy, enter the following command:

fpolicy create PolicyName policytype

PolicyName is the name of the file policy that you want to create. The policy name should be unique and not more than 80 characters long. The file policy name can consist of Unicode characters. The only special characters from the ASCII character set allowed in the policy name are the underscore (_) and the hyphen (-). In addition to not allowing most special characters in new policy names, FPolicy truncates the existing policy names that contains a "." (dot) in them by dropping the characters after and including the dot. Any options configured on this file policy will be lost after the upgrade.

policytype is the policy group to which this file policy should belong. Currently, the only policy type supported by FPolicy is screen.

Example

fpolicy create policy1 screen

A file policy is created using the policy name policy1 specified using the screen policy type.

Note: You can create and use up to 20 file policies for each VFiler unit at one time.

For the file policy to work and take effect, enable the created file policy.

Related tasks

Enabling or disabling the FPolicy feature on page 162

Enabling the file policy

Once created, a file policy needs to be enabled before notification policies can be configured. To enable a file policy, you use the enable command.

Step

1. To enable the file policy, enter the following command:

```
fpolicy enable PolicyName
```

PolicyName is the name of the policy that you want to enable.

Example

```
fpolicy enable policy1
```

The specified file policy is enabled.

Note: To activate the file policy, make sure that options fpolicy.enable is turned on.

Specifying mandatory file screening

The required option determines if file screening should be mandatory.

When the required option is set to on, file screening becomes mandatory. If an FPolicy server is not available, since screening cannot be performed, the client request is denied. Use this option to enable native file blocking as well.

When the required option is set to off, file screening is not mandatory. If an FPolicy server is not connected, operations are permitted without screening.

Step

1. To make file screening mandatory, enter the following command:

```
fpolicy options PolicyName required on
```

PolicyName is the name of the policy for which you want to set the required option.

This option is set to off, by default. If you turn on the required option for a policy when no file screening servers are available, the native file blocking feature blocks access to files specified in that policy.

Note: If you do not want to make file screening mandatory, set the same command to off.

Related concepts

What native file blocking is on page 157

Displaying information for a file policy

Important information on a particular file policy can be displayed using the fpolicy show command

Step

1. Enter the following command:

fpolicy show PolicyName

PolicyName is the name of the file policy for which you want to view information.

The show command displays the following information about a particular file policy:

- Status of the file policy
- · List of operations monitored
- · List of volumes screened
- List of extensions screened
- Total time that the server has been connected
- Number of requests screened
- · Number of requests denied
- · Number of requests blocked locally

Displaying information for all file policies

Important information on all the file policies can be displayed using the fpolicy command.

Step

1. Enter the following command:

fpolicy

The fpolicy command displays the following information about all existing file policies:

- The list of FPolicy servers registered
- Status of all file policies
- List of operations monitored by each file policy
- List of volumes screened by each file policy
- List of extensions screened by each file policy
- · Total time that the server has been connected
- Number of requests screened by each file policy
- Number of requests denied by each file policy

• Number of requests blocked locally

Disabling a file policy

When a file policy is disabled, the operations that are specified for that particular file policy will not be monitored. When a particular file policy is disabled, no file request notification is sent to the FPolicy server even if the FPolicy server is registered with the storage system.

Step

1. To disable a file policy, enter the following command:

```
fpolicy disable PolicyName
Example
fpolicy disable policy1
```

Destroying a file policy

Destroying a file policy immediately removes an existing file policy from the connected storage system.

To destroy or delete a particular file policy, use the destroy command. You must disable the file policy before destroying it. If an FPolicy server is connected to a file policy, the FPolicy server is deregistered.

Step

1. To destroy a file policy and remove it from a list of file policies, enter the following command:

```
fpolicy destroy PolicyName
Example
```

•

fpolicy destroy policy1

When you enter this command, the specified file policy is destroyed or deleted from the list of policies.

Stopping server screening for disconnected CIFS requests

PolicyName is the name of the file policy you want to delete.

You can choose to stop the server from screening CIFS requests whose session is disconnected by enabling the cifs_disconnect_check option.

You can filter out redundant requests and reduce the load on the FPolicy server.

Step

1. To enable this feature on individual file policies, enter the following command:

```
fpolicy options PolicyName cifs_disconnect_check on
```

PolicyName is the name of the file policy for which you are enabling the check.

Note: By default, this option is set to off.

Example

To enable cifs_disconnect_check for file policy p1, use the following command:

```
filer> fpolicy options p1 cifs_disconnect_check
fpolicy options p1 cifs_disconnect_check: off
filer> fpolicy options p1 cifs_disconnect_check on
```

Setting a limit on simultaneous screening of CIFS requests

You can limit the number of CIFS requests that can be simultaneously screened by the FPolicy server. This option ensures that CIFS requests do not run out of pBlks.

When a particular limit is set, the requests beyond the limit will not be sent for screening to the FPolicy server.

This limit can be set through the flag, fp_maxcifsreqs_pblkpercent, which sets the limit as a percentage of maximum number of pBlks available on the storage system. You can set this using the setflag and printflag commands.

Note: The setflag and printflag are available only at the diag privilege level.

Step

1. To set the limit on screening use the following command:

```
setflag fp_maxcifsreqs_pblkpercent limit_value
```

limit_value is the maximum number of simultaneous requests you want to allow. The value should range between 1 and 100.

Note: The feature will be disabled for any value outside the range [1 through 100].

Example

To set the limit, enter the following commands:

```
filer> priv set diag
filer*> printflag fp_maxcifsreqs_pblkpercent
```

```
fp_maxcifsreqs_pblkpercent = 0
filer*> setflag fp_maxcifsreqs_pblkpercent 30
```

To determine the maximum number of pBlks on the storage system, run the command cifs stat. The Max pBlks field in the output displays the maximum number of pBlks on the storage system.

```
filer> cifs stat
Max pBlks = 256 Current pBlks = 256 Num Logons = 0
```

Setting server timeout

You can set the limit on how long the system waits for the FPolicy server to respond to a request. You can set this limit individually for each file policy. This option ensures that the FPolicy server is making progress.

Step

1. To set the timeout value for individual file policies, enter the following command:

```
fpolicy options PolicyName serverprogress_timeout timeout-in-secs
```

PolicyName is the name of the file policy for which you want to set the FPolicy server timeout. timeout-in-secs is the timeout value in seconds.

The minimum timeout value that you can provide is zero and the maximum timeout value is 4294967 seconds. Setting a timeout value of zero disables the serverprogress_timeout option.

Note: By default, this option is disabled and no timeout value is set.

After the timeout value is set, if the FPolicy server does not respond before the set timeout value, it is disconnected.

Example

To set the timeout value for file policy p1, use the following command:

```
filer> fpolicy options pl serverprogress_timeout
fpolicy options p1 serverprogress_timeout: 0 secs (disabled)
filer> fpolicy options p1 serverprogress_timeout 600
filer> fpolicy options fp1 serverprogress_timeout 4294967
```

Setting request screening timeout

You can set a limit on how long the system waits for the FPolicy server to screen a request. You can set this limit individually on each policy. This option improves the performance of the FPolicy server.

Step

1. To set the timeout value for individual file policies, enter the following command:

```
fpolicy options PolicyName requancel_timeout timeout-in-secs

PolicyName is the name of the file policy you want to set the screening timeout for.

timeout-in-secs is the timeout value is seconds
```

After the timeout value is set, if the screen request is not complete within the set timeout value, the screen request is cancelled.

Example

To set the timeout value for file policy p1, use the following command:

```
filer> fpolicy options p1 reqcancel_timeout
fpolicy options p1 reqcancel_timeout: 0 secs (disabled)
filer> fpolicy options p1 reqcancel_timeout 60
```

Enabling or disabling multiple open instances of the SMB named pipe

You can enable multiple open instances of the SMB named pipe on an FPolicy server by using the fpolicy.multiple_pipes option.

When you enable this option, the FPolicy engine can open up to 10 instances of the SMB named pipe simultaneously to an FPolicy server. However, when you disable this option, only one instance of the SMB named pipe is opened to an FPolicy server.

Step

1. To enable or disable multiple open instances of the SMB named pipe on an FPolicy server, enter the following command:

```
options fpolicy.multiple_pipes {on|off}
```

By default, this option is set to on.

Events screened for NFS and CIFS clients

The FPolicy server can screen a number of operations or events for file requests received from NFS and CIFS clients.

The following table lists the events screened in NFS and CIFS for both native file blocking and server-based screening.

Events	Protocols	Description
File open	CIFS and NFS(v4)	Notification sent when a file is opened
File create	CIFS and NFS	Notification sent when a file is created
File rename	CIFS and NFS	Notification sent when a file name is changed
File close	CIFS and NFS(v4)	Notification sent when a file is closed
File delete	CIFS and NFS	Notification sent when a file is deleted
File read	CIFS and NFS	Notification sent when a file is read
File write	CIFS and NFS	Notification sent when a file is worked upon
Directory delete	CIFS and NFS	Notification sent when a directory is deleted
Directory rename	CIFS and NFS	Notification sent when a directory name is changed
Directory create	CIFS and NFS	Notification sent when a directory is created
Getattr	NFS	Notification sent of request for attribute information
Setattr	CIFS and NFS	Notification sent of setting attributes information
Create hard link	NFS	Notification sent when a hard link is created
Create symlink	NFS	Notification sent when a symbolic link is created
Lookup	NFS	Notification sent when an NFS lookup occurs

Note: Although the CIFS setattr event can perform a variety of functions, only setattr operations that change the Security Descriptor information are monitored by FPolicy. The security descriptor information includes owner, group, discretionary access control list (DACL), and system access control list (SACL) information.

FPolicy can be used to cover most events in the file system related NFS and CIFS operations. Some of the operations that FPolicy does not monitor are listed here.

- NFS (v2, v3, v4): ACCESS, COMMIT, FSINFO, FSTAT, PATHCONF, ROOT, READLINK, READDIR, READDIRPLUS, STATFS, MKNOD
- NFSv4 : Operations related to locking and delegation
- CIFS:

- Tree operations such as SMB_COM_TREE_CONNECT and SMB_COM_TREE_DISCONNECT
- Session related operations such as SMB COM SESSION SETUP ANDX
- · Locking-related operations
- Operations not relevant to file system activity, such as print-related operations

What a file or directory event is

A variety of file and directory operations are screened. Based on the configuration of the policy, notifications are sent to the FPolicy server for operation requests.

Next topics

What file open request monitoring is on page 171

What file create request monitoring is on page 173

What file close request monitoring is on page 174

What file rename request monitoring is on page 176

What file delete request monitoring is on page 177

What file write request monitoring is on page 178

What file read request monitoring is on page 180

What link request monitoring is (for NFS only) on page 181

What symlink (symbolic link) request monitoring is (for NFS only) on page 182

What directory delete request monitoring is on page 183

What directory rename request monitoring is on page 185

What directory create request monitoring is on page 186

What file lookup request monitoring is (for NFS only) on page 187

What getattr request monitoring is (for NFS only) on page 188

What setattr request monitoring is on page 190

What file open request monitoring is

FPolicy receives a notification from the storage system for file open operations.

When a file open request is made by a CIFS or NFSv4 client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, file availability, and whether the file is being accessed by another client. After the file passes the checks, if the file extension is included in the file policy extension include list, the request is forwarded to the FPolicy server. The FPolicy server receives this request and allows or blocks the file open request, based on the configuration of the policies.

If the storage system reboots, NFSv4 clients can reclaim file handles for files that were open before shutdown. After the storage system is functional again, if the FPolicy server connects to the storage system before the NFS clients, the storage system forwards the reclaim file as an open request to the FPolicy server.

If the FPolicy server connects to the storage system after the NFS clients, the storage system does not forward the open reclaim request as an open request to the FPolicy server. In this case, the NFS client gets the file handle using the NFSv4 reclaim operation.

To enable file extension-based screening for NFS operations, set the no_i2p option to off on the volume. This enables inode-to-path file name translation on the volume.

Previous releases of FPolicy do not support NFSv4 protocol and the i2p option.

Note: FPolicy supports the NFSv4 protocol and the i2p option on volumes beginning with the Data ONTAP 7.3 release.

If you are running an FPolicy for Data ONTAP based application in NFSv4 environments, you must upgrade the FPolicy application to support NFSv4.

NFSv4 adds support for file OPEN and CLOSE events. Therefore, in applications based on previous releases of FPolicy, these file operations might appear as UNKNOWN event errors to the FPolicy application.

The file open operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file open operation can be monitored through the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

Next topics

Configuring FPolicy to monitor file open operations through the CLI on page 172
Configuring FPolicy to monitor file open operations through ONTAPI on page 172
Registering FPolicy for monitoring file open requests on page 173

Configuring FPolicy to monitor file open operations through the CLI

You can use the fpolicy monitor add command to configure a file policy to monitor file open operations. This CLI command adds the file open operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the file open operation, enter the following CLI command:

fpolicy monitor add PolicyName open

Configuring FPolicy to monitor file open operations through ONTAPI

You can use an ONTAPI call to configure a file policy to monitor file open operations.

Step

1. To set the monitoring options for file open operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the file-open operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a file open operation, both NFS and CIFS requests can be monitored.

Registering FPolicy for monitoring file open requests

You can monitor file open operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file open operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_OPEN 0x0001
```

After the registration is complete, the FPolicy server monitors all file open requests.

What file create request monitoring is

The FPolicy server receives a notification from the storage system for file create operations.

When a file create request is made by a CIFS or NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server, if the file extension is included in the FPolicy extension include list. The FPolicy server receives this request and allows or blocks the file create request, based on the configuration of the policies.

The file create operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file create operation can be monitored using the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

Next topics

Configuring FPolicy to monitor file create operations through the CLI on page 173
Configuring FPolicy to monitor file create operations through ONTAPI on page 174
Registering FPolicy for monitoring file create requests on page 174

Configuring FPolicy to monitor file create operations through the CLI

To configure a file policy to monitor file create operations, use the fpolicy monitor add command.

This CLI command adds the create file operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the file create operation, use the following CLI command:

fpolicy monitor add PolicyName create

Configuring FPolicy to monitor file create operations through ONTAPI

You can use an ONTAPI call to configure a file policy to monitor file create operations.

Step

1. To set the monitoring options for file create operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the file-create operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a file create operation, both NFS and CIFS requests can be monitored.

Registering FPolicy for monitoring file create requests

You can monitor file create operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file create operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

FS_OP_CREATE 0x0002

After the registration is complete, the FPolicy server monitors all file create requests.

What file close request monitoring is

The FPolicy server receives a notification from the storage system for file close operations.

When a file close request is made by a CIFS or NFSv4 client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permission, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server. After the file is closed, the storage system sends a notification to the FPolicy server that the file is closed.

The FPolicy server cannot block the file close operation.

The file close operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file close operation can be monitored using the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

Open downgrade operations in NFSv4 are also considered close operations, and notifications are sent for such operations.

To enable file extension-based screening, for NFSv4 operations, set the no_i2p option to off on the volume. This enables the inode-to-path file name translation on the volume.

Note: Beginning with the Data ONTAP 7.3 release, FPolicy supports the NFSv4 protocol.

Next topics

Configuring FPolicy to monitor file close operations through the CLI on page 175
Configuring FPolicy to monitor file close operations through ONTAPI on page 175
Registering FPolicy for monitoring file close requests on page 175

Configuring FPolicy to monitor file close operations through the CLI

You can use the fpolicy monitor add CLI command to configure a file policy to monitor file close operations.

This CLI command adds the close file operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the file close operation, use the following CLI command:

fpolicy monitor add PolicyName close

Configuring FPolicy to monitor file close operations through ONTAPI

You can use an ONTAPI call to configure a file policy to monitor file close operations.

Step

1. To set the monitoring options for file close operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the file-close operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a file close operation, both NFS and CIFS requests can be monitored.

Registering FPolicy for monitoring file close requests

You can monitor file close operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file close operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_CLOSE 0x0008
```

After the registration is complete, the FPolicy server monitors all file close requests.

What file rename request monitoring is

The FPolicy server receives a notification from the storage system for file rename operations.

When a file rename request is made by a CIFS or NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permission, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server, if the file extension is included in FPolicy ext[ension] inc[lude] list.

The rename request is sent to the FPolicy server only if either the old or the new extension is listed in the ext[ension] inc[lude] list. That is, if a file name is being changed from test.txt to test.mp3, either or both the extensions (.txt or .mp3) should be listed in the extension include list.

The FPolicy server receives this request and allows or blocks the file rename request, based on the configuration of the policies.

The file rename operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file rename operation can be monitored through the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

Next topics

Configuring FPolicy to monitor file rename operations through the CLI on page 176 Configuring FPolicy to monitor file rename operations through ONTAPI on page 176 Registering FPolicy to monitor file rename requests on page 177

Configuring FPolicy to monitor file rename operations through the CLI

Use the fpolicy monitor add CLI command to monitor file rename operations.

This CLI command adds the create file operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the file rename operation, use the following CLI command:

fpolicy monitor add PolicyName rename

Configuring FPolicy to monitor file rename operations through ONTAPI

Use the fpolicy-operations-list-set ONTAPI call to configure a file policy to monitor file rename operations.

Step

1. To set the monitoring options for file rename operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the *file-rename* operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of file create, both NFS and CIFS requests can be monitored.

Registering FPolicy to monitor file rename requests

You can monitor file rename operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file rename operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

FS_OP_RENAME 0x0004

After the registration is complete, the FPolicy server monitors all file rename requests.

What file delete request monitoring is

The FPolicy server receives a notification from the storage system for file delete operations.

When a file delete request is made by a CIFS or NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, checking if the file is available, checking if the file is being accessed by some other client, and so on. When the checks are complete and the file passes the check, the request notification is sent to the FPolicy server. The FPolicy server receives this request and allows or blocks the file delete request, based on the configuration of the policies.

The file delete operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file delete operation can be monitored using the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

To enable file extension-based screening, for NFS operations, set the no_i2p option to off on the volume. This enables the inode-to-path file name translation on the volume.

Next topics

Configuring FPolicy to monitor file delete operations through CLI on page 177
Configuring FPolicy to monitor file delete operations through ONTAPI on page 178
Registering FPolicy for monitoring file delete requests on page 178

Configuring FPolicy to monitor file delete operations through CLI

You can use the fpolicy monitor CLI command to monitor file delete operations.

This CLI command adds the delete file operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the file delete operation, use the following CLI command:

```
fpolicy monitor add PolicyName delete
```

Configuring FPolicy to monitor file delete operations through ONTAPI

You can use the fpolicy-operations-list-set ONTAPI call to monitor file delete operations.

Step

1. To set the monitoring options for file delete operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the file-delete operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a file delete operation, both CIFS and NFS requests can be monitored.

Registering FPolicy for monitoring file delete requests

You can monitor file delete operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file delete operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_DELETE 0x0010
```

After the registration is complete, the FPolicy server monitors all file delete requests.

What file write request monitoring is

The FPolicy server receives a notification from the storage system for file write operations.

When a file write request is made by a CIFS or NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server, if the file extension is included in the FPolicy extension include list.

The FPolicy server receives this request and allows or blocks the file write request, based on the configuration of the policies.

The file write operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file write operation can be monitored using the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

To enable file extension-based screening, for NFS operations, set the no_i2p option to off on the volume. This enables the translation of inode-to-path file name on the volume.

Next topics

Configuring FPolicy to monitor file write operations through the CLI on page 179
Configuring FPolicy to monitor file write operations through ONTAPI on page 179
Registering FPolicy to monitor file write requests on page 179

Configuring FPolicy to monitor file write operations through the CLI

You can use the fpolicy monitor CLI command to monitor file write operations.

This CLI command adds the write file operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the file write operation, use the following CLI command:

fpolicy monitor add PolicyName write

Configuring FPolicy to monitor file write operations through ONTAPI

You can use the fpolicy-operations-list-set ONTAPI call to configure a file policy to monitor file write operations.

Step

1. To monitor the file write operation, use the following ONTAPI call:

```
fpolicy-operations-list-set
```

In the monitored-operations input name field, the monitored-operation-info[] should contain the write operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a file write operation, both CIFS and NFS requests can be monitored.

Registering FPolicy to monitor file write requests

You can monitor file write operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file write operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS OP WRITE 0x4000
```

After the registration is complete, the FPolicy server monitors all file write requests.

What file read request monitoring is

The FPolicy server receives a notification from the storage system for file read operations.

When a file read request is made by a CIFS or NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server, if the file extension is included in FPolicy ext[ension] inc[lude] list.

The FPolicy server receives this request and allows or blocks the file read request, based on the configuration of the policies.

The file read operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file read operation can be monitored through the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

To enable file extension-based screening, for NFS operations, set the no_i2p option to off on the volume. This enables the inode-to-path file name translation on the volume.

Next topics

Configuring FPolicy to monitor file read operations through the CLI on page 180 Configuring FPolicy to monitor file read operations through ONTAPI on page 180 Registering FPolicy to monitor file read requests on page 181

Configuring FPolicy to monitor file read operations through the CLI

You can use the fpolicy monitor CLI command to monitor file read operations.

This CLI command adds the read file operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the file read operation, use the following CLI command:

fpolicy monitor add PolicyName read

Configuring FPolicy to monitor file read operations through ONTAPI

You can use the fpolicy-operations-list-set ONTAPI call to monitor file read operations.

Step

1. To set the monitoring options for file read operations, use the following ONTAPI call: fpolicyoperations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the read operation. The monitored-protocols should contain the specific protocols that you wish to monitor. In the case of a file read operation, both CIFS and NFS requests can be monitored.

Registering FPolicy to monitor file read requests

You can monitor file read operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file read operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_READ 0x2000
```

After the registration is complete, the FPolicy server monitors all file read requests.

What link request monitoring is (for NFS only)

The FPolicy server receives a notification from the storage system for file link operations.

When a file link request is made by an NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server, if the file extension is included in FPolicy extension include list. The FPolicy server receives this request and allows or blocks the file link request, based on the configuration of the policies.

The file link operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file link operation can be monitored through the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

Next topics

Configuring FPolicy to monitor file link operations through the CLI on page 181 Configuring FPolicy to monitor file link operations through ONTAPI on page 182 Registering FPolicy to monitor file link requests on page 182

Configuring FPolicy to monitor file link operations through the CLI

You can use the fpolicy monitor CLI command to configure a file policy, to monitor file link operations.

Step

1. To monitor the file link operation, use the following CLI command:

```
fpolicy monitor add PolicyName link
```

This CLI command can add the file link operations to the list of monitored events for NFS requests.

Configuring FPolicy to monitor file link operations through ONTAPI

You can use the fpolicy-operations-list-set ONTAPI call to monitor file link operations.

Step

1. To set the monitoring options for file link operations, use the following ONTAPI call: fpolicyoperations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the link operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a file link operation, only NFS requests can be monitored.

Registering FPolicy to monitor file link requests

You can monitor file link operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file link operations, set the following bit in the OpsToScreen bitmask in the FP registration() call when you register the FPolicy server to the storage system:

FS_OP_LINK 0x0400

After the registration is complete, the FPolicy server monitors all file link requests.

What symlink (symbolic link) request monitoring is (for NFS only)

The FPolicy server receives a notification from the storage system for file symlink operations.

When a file symlink request is made by an NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server, if the file extension is included in the FPolicy extension include list. The FPolicy server receives this request and allows or blocks the file symlink request, based on the configuration of the policies.

The file symlink operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file symlink operation can be monitored using the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

To enable file extension-based screening, for NFS operations, set the no_i2p option to off on the volume. This enables the inode-to-path file name translation on the volume.

Next topics

Configuring FPolicy to monitor file symlink operations through the CLI on page 183 Configuring FPolicy to monitor file symlink operations through ONTAPI on page 183 Registering FPolicy to monitor file symlink requests on page 183

Configuring FPolicy to monitor file symlink operations through the CLI

You can use a CLI command to configure a file policy, to monitor file symlink operations.

This CLI command adds the symlink file operations to the list of monitored events for NFS requests.

Step

1. To monitor the file symlink operation, use the following CLI command:

fpolicy mon[itor] add PolicyName symlink

Configuring FPolicy to monitor file symlink operations through ONTAPI

You can use an ONTAPI to configure a file policy, to monitor file symlink operations.

Step

1. To set the monitoring options for file symlink operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the symlink operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a file symlink operation, both CIFS and NFS requests can be monitored.

Registering FPolicy to monitor file symlink requests

You can monitor file symlink operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file symlink operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_SYMLINK 0x0800
```

After the registration is complete, the FPolicy server monitors all file symlink requests.

What directory delete request monitoring is

The FPolicy server receives a notification from the storage system for directory delete operations.

When a directory delete request is made by a CIFS client using RMDIR operations or an NFS client using UNLINK operations to the storage system, the storage system conducts all the relevant checks on the directory. The relevant checks include checking permission, checking if the directory is available, checking if the directory is being accessed by some other client, and so on. After the directory passes the checks, the request is forwarded to the FPolicy server. If the required option is set to on in the file policy and a directory delete operation is requested, the request is denied.

The directory delete operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The directory delete operation can be monitored through CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

Next topics

Configuring FPolicy to monitor directory delete operations through the CLI on page 184
Configuring FPolicy to monitor directory delete operations through ONTAPI on page 184
Registering FPolicy to monitor directory delete requests on page 184

Configuring FPolicy to monitor directory delete operations through the CLI

You can use a CLI command to configure a file policy, to monitor directory delete operations.

This CLI command adds the directory delete operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the directory delete operation, use the following CLI command:

fpolicy mon[itor] add PolicyName directory-delete

Configuring FPolicy to monitor directory delete operations through ONTAPI

You can use an ONTAPI call to configure a file policy, to monitor directory delete operations.

Step

1. To set the monitoring options for directory delete operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the directory-delete operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a directory delete operation, both CIFS and NFS requests can be monitored.

Registering FPolicy to monitor directory delete requests

You can monitor directory delete operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of directory delete operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_DELETE_DIR 0x0020
```

After the registration is complete, the FPolicy server monitors all directory delete requests.

What directory rename request monitoring is

The FPolicy server receives a notification from the storage system for directory rename operations.

When a directory rename request is made by a CIFS or NFS client to the storage system, the storage system conducts all the relevant checks on the directory. The relevant checks include checking permissions, checking if the directory is available, checking if the directory is being accessed by some other client, and so on. After the directory passes the checks, the request is forwarded to the FPolicy server. If the required option is set to on in the file policy and a directory rename operation is requested, the request is denied.

The directory rename operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The directory rename operation can be monitored through the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

Next topics

Configuring FPolicy to monitor directory rename operations through CLI on page 185
Configuring FPolicy to monitor directory rename operations through ONTAPI on page 185
Registering FPolicy to monitor directory rename requests on page 186

Configuring FPolicy to monitor directory rename operations through CLI

You can use a CLI command to configure a file policy, to monitor directory rename operations.

This CLI command adds the directory rename operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the directory rename operation, use the following CLI command:

fpolicy mon[itor] add PolicyName directory-rename

Configuring FPolicy to monitor directory rename operations through ONTAPI

You can use an ONTAPI call to configure a file policy, to monitor directory rename operations.

Step

1. To set the monitoring options for directory rename operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the directory-rename operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a directory rename operation, both CIFS and NFS requests can be monitored

Registering FPolicy to monitor directory rename requests

You can monitor directory rename operations by registering for it when you register an FPolicy server

Step

1. To enable the screening of directory rename operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_RENAME_DIR 0x0040
```

After the registration is complete, the FPolicy server monitors all directory rename requests.

What directory create request monitoring is

The FPolicy server receives a notification from the storage system for directory create operations.

When a directory create request is made by a CIFS or NFS client to the storage system, the storage system conducts all the relevant checks on the directory. The relevant checks include checking permissions, checking if the directory is available, checking if the directory is being accessed by some other client, and so on. After the directory passes the checks, the request is forwarded to the FPolicy server. If the required option is set to on in the file policy and a directory create operation is requested, the request is denied.

The directory create operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The directory create operation can be monitored through the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

Next topics

Configuring FPolicy to monitor directory create operations through the CLI on page 186 Configuring FPolicy to monitor directory create operations through ONTAPI on page 187 Registering FPolicy to monitor directory create requests on page 187

Configuring FPolicy to monitor directory create operations through the CLI

You can use a CLI command to configure a file policy, to monitor directory create operations.

This CLI command adds the directory create operations to the list of monitored events for CIFS and NFS requests.

Step

1. To monitor the directory create operation, use the following command:

```
fpolicy mon[itor] add PolicyName directory-create
```

Configuring FPolicy to monitor directory create operations through ONTAPI

You can use an ONTAPI call to configure a file policy, to monitor directory create operations.

Step

1. To set the monitoring options for directory create operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the directory-create operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a directory create operation, both CIFS and NFS requests can be monitored.

Registering FPolicy to monitor directory create requests

You can monitor directory create operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of directory create operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_CREATE_DIR 0x0080
```

After the registration is complete, the FPolicy server monitors all directory create requests.

What file lookup request monitoring is (for NFS only)

The FPolicy server receives a notification from the storage system for file lookup operations.

When a file lookup request is made by an NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server, if the file extension is included in the FPolicy ext[ension] inc[lude] list. The FPolicy server receives this request and allows or blocks the file lookup request, based on the configuration of the policies.

The file lookup operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The file lookup operation can be monitored using the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

Next topics

Configuring FPolicy to monitor file lookup operations through the CLI on page 188
Configuring FPolicy to monitor file lookup operations through ONTAPI on page 188
Registering FPolicy to monitor file lookup requests on page 188

Configuring FPolicy to monitor file lookup operations through the CLI

You can use a CLI command to configure a file policy, to monitor file lookup operations.

Step

1. To monitor the file lookup operation, use the following CLI command:

```
fpolicy mon[itor] add PolicyName lookup
```

Configuring FPolicy to monitor file lookup operations through ONTAPI

You can use an ONTAPI call to configure a file policy, to monitor file lookup operations.

Step

1. To set the monitoring options for file lookup operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the lookup operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a file lookup operation, only NFS requests can be monitored.

Registering FPolicy to monitor file lookup requests

You can monitor file lookup operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of file lookup operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_LOOKUP 0x1000
```

After the registration is complete, the FPolicy server monitors all file lookup requests.

What getattr request monitoring is (for NFS only)

The FPolicy server receives a notification from the storage system for getattr operations.

When a get attributes (getattr) request is made by an NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server, if the file extension is included in the FPolicy ext[ension] inc[lude] list.

The FPolicy server receives this request and allows or blocks the getattr request, based on the configuration of the policies.

The getattr operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The getattr operation can be monitored through the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

To enable file extension-based screening, for NFS operations, set the no_i2p option to off on the volume. This enables the inode-to-path file name translation on the volume.

Next topics

Configuring FPolicy to monitor get attributes operations through CLI on page 189
Configuring FPolicy to monitor get attributes operations through ONTAPI on page 189
Registering FPolicy to monitor get attributes requests on page 189

Configuring FPolicy to monitor get attributes operations through CLI

You can use a CLI command to configure a file policy, to monitor getattr operations.

This CLI command adds the get attributes operations to the list of monitored events for NFS requests.

Step

1. To monitor the get attributes operation, use the following CLI command:

```
fpolicy mon[itor] add PolicyName getattr
```

Configuring FPolicy to monitor get attributes operations through ONTAPI

You can use an ONTAPI call to configure a file policy, to monitor getattr operations.

Step

1. To set the monitoring options for getattr operations, use the following ONTAPI call: fpolicy-operations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the getattr operation. The monitored-protocols should contain the specific protocols that you want to monitor. In the case of a getattr operation, only NFS requests can be monitored.

Registering FPolicy to monitor get attributes requests

You can monitor getattr operations by registering for it when you register an FPolicy server.

Step

1. To enable the screening of getattr operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS OP GETATTR 0x0100
```

After the registration is complete, the FPolicy server monitors all get attributes requests.

What setattr request monitoring is

The FPolicy server receives a notification from the storage system for setattr operations.

When a set attributes (setattr) request is made by an NFS client to the storage system, the storage system conducts all the relevant checks on the file. The relevant checks include checking permissions, checking if the file is available, checking if the file is being accessed by some other client, and so on. After the file passes the checks, the request is forwarded to the FPolicy server, if the file extension is included in the FPolicy ext[ension] inc[lude] list. The FPolicy server receives this request and allows or blocks the setattr request, based on the configuration of the policies.

When a set attributes (setattr) request is made by CIFS clients to the storage system using the NT_TRANSACT_SET_SECURITY_DESC operation, the storage system sends setattr notification if the CIFS client makes changes to the security descriptor. The security descriptor information includes owner, group, discretionary access control list (DACL), and system access control list (SACL) information. If the Windows-based CIFS client sends the NT_TRANSACT_SET_SECURITY_DESC operation to the storage system, without changing the security descriptor information, it does not forward the request to the FPolicy server.

The setattr operation should be added to the monitored operations list for the FPolicy server to receive a notification from the storage system. The setattr operation can be monitored through the CLI or ONTAPI. It can also be set by the FPolicy server using a bitmask.

To enable file extension-based screening, for NFS operations, set the no_i2p option to off on the volume. This enables the inode-to-path file name translation on the volume.

Next topics

Configuring FPolicy to monitor set attributes operations through the CLI on page 190 Configuring FPolicy to monitor set attributes operations through ONTAPI on page 191 Registering FPolicy to monitor set attributes requests on page 191

Configuring FPolicy to monitor set attributes operations through the CLI

You can use a CLI command to configure a file policy, to monitor setattr operations.

This CLI command adds the set attribute operations to the list of monitored events for NFS requests.

Step

1. To monitor the set attributes operation, use the following CLI command:

fpolicy mon[itor] add PolicyName setattr

You can use an ONTAPI call to configure a file policy, to monitor setattr operations.

Step

 To set the monitoring options for setattr operations, use the following ONTAPI call: fpolicyoperations-list-set

In the monitored-operations input name field, the monitored-operation-info[] should contain the setattr operation. The monitored-protocols should contain the specific protocols that you wish to monitor. In the case of a setattr operation, only NFS requests can be monitored.

Registering FPolicy to monitor set attributes requests

You can monitor setattr operations using bitmasks when you register an FPolicy server.

Step

1. To enable the screening of setattr operations, set the following bit in the OpsToScreen bitmask in the FP_registration() call when you register the FPolicy server to the storage system:

```
FS_OP_SETATTR 0x0200
```

After the registration is complete, the FPolicy server monitors all set attributes requests.

What screening by volume is

FPolicy enables you to restrict a policy to a certain list of volumes, by including or excluding volumes that need to be screened.

Using the include list, you can request notifications for the specified volume list. Using the exclude list, you can request notifications for all volumes except the specified volume list.

Note: If both an include list and an exclude list are set, the include list is ignored.

It is possible to set different include and exclude volumes for different policies.

The default volumes list for a file policy is:

- All volumes are listed in the include list.
- No volumes are listed in the exclude list.

You can perform the following operations on the exclude and include lists:

- Reset or restore the volume list to the default list.
- Show or display the volumes in an include or exclude list.
- Add a volume to the include or exclude list.
- Remove a volume from the include or exclude list.
- Set or replace the existing list with a new volume list.

• Display the list of volumes for a file policy with wildcard characters.

From the command line, you can display or change the list of included and excluded volumes.

The command syntax to reset or display the file volumes list is as follows:

```
fpolicy vol[ume] {inc[lude]|exc[lude]} {reset|show} PolicyName
```

The command syntax to work with file volumes is as follows:

fpolicy vol[ume] {inc[lude]|exc[lude]} {add| remove|set|eval} PolicyName
vol-spec

include is used to make changes to the include list.

exclude is used to make changes to the exclude list.

reset is used to restore the file volume list to the default list.

show is used to display the exclude or include list as entered.

add is used to add a volume to the exclude or include list.

remove is used to remove a volume from the exclude or include list.

set is used to replace the existing list with a new volume list.

eval is used to display the list of volumes for a file policy with wildcard characters.

PolicyName is the name of the file policy.

vol-spec is the name of the volume list that you want to change.

Next topics

Wildcard information for screening with volumes on page 192

How to display the list of volumes on page 193

How to add volumes to the list on page 194

How to remove volumes from the list on page 195

How to specify or replace a list of volumes on page 196

How to reset the volumes in a list on page 197

Wildcard information for screening with volumes

You can use the question mark (?) or asterisk (*) wildcard characters, to specify the volume.

The question mark (?) wildcard character stands for a single character. For example, entering **vol?** in a list of volumes that contain vol1, vol2, vol23, vol14 will match vol1 and vol2.

The asterisk (*) wildcard character stands for any number of characters that contain the specified string. Entering *test* in a list of volumes to exclude from file screening excludes all volumes that contain the string such as test_vol and vol_test.

How to display the list of volumes

To display the list of volumes you have specified to include or exclude for a file policy, you can use the show or eval command.

Next topics

Displaying volumes using the show command on page 193 Displaying volumes using the eval command on page 193

Displaying volumes using the show command

You can display the list of specified volumes using the show command.

The show command of the fpolicy volume command displays the list of specified volumes as entered at the command line. If you specified a set of volumes using wildcard characters, the show command displays the wildcard character you entered. For example, vol*.

Step

 To display the list of excluded volumes you specified for a file policy, enter the following command:

```
fpolicy vol[ume] exc[lude] show PolicyName
```

When you enter this command, Data ONTAP responds with a list of entries from the exclude list for the file you specified. This might include volume names and wildcard characters that describe a set of volumes (for example, vol*).

Note: If you want to show volumes from the list of files to be included for file screening, use the include (inc) option in place of the exclude (exc) option.

Displaying volumes using the eval command

You can display the list of specified volumes using the eval command.

The eval command of the fpolicy volume command displays the specified volumes after evaluating any wildcard character included in the list you entered. For example, if your list includes vol*, the eval command lists all volumes including the string vol, such as vol1, vol22, or vol_sales.

Step

1. To display the list of excluded volumes for a file policy with the wildcard character evaluated, enter the following command:

```
fpolicy vol[ume] exc[lude] eval PolicyName
```

When you enter this command, Data ONTAP responds with a list of volumes from the exclude list for the file you specified, with wildcard character evaluated. For example, if you entered **vol***, the eval display includes all volumes including the string vol, such as vol1, vol22, or vol_sales.

Note: To use the eval command for the list of files to be included for file screening, use the include (inc) option instead of the exclude (exc) option.

How to add volumes to the list

You can add volumes to the include or exclude volume list.

Next topics

Adding volumes to the include list on page 194 Adding volumes to the exclude list on page 194

Adding volumes to the include list

To add volumes to the include volumes list, you can use the fpolicy volume include add CLI command.

Step

1. To add volumes to the include list of volumes to be screened for a file policy, enter the following command:

fpolicy volume include add PolicyName vol-spec

Files in the volumes you add to an include list will always be screened by the file screening server when the policy is enabled.

Example

To include vol1, vol2, vol3 to the list of volumes screened, enter the following command:

fpolicy vol inc add imagescreen vol1, vol2, vol3

After the volumes are added, the policy *imagescreen* performs screening in the volumes vol1, vol2, and vol3.

Adding volumes to the exclude list

You can add volumes to the exclude volumes list using the fpolicy volume exclude add CLI command.

Step

1. To add volumes to the exclude list of volumes to be screened for a file policy, enter the following command:

fpolicy volume exclude add PolicyName vol-spec

Files in the volumes you add to an exclude list will not be screened by the file screening server when that policy is enabled (unless contradicted by another enabled file screening policy).

Example

To exclude vol4, vol5, vol6 to the list of volumes screened, enter the following command:

fpolicy vol exc add default vol4, vol5, vol6

When the volumes are added to the list, the modified default policy will no longer perform file screening in the volumes vol4, vol5, and vol6.

How to remove volumes from the list

You can remove volumes from the include or exclude volume list.

Next topics

Removing volumes from the include list on page 195 Removing volumes from the exclude list on page 195

Removing volumes from the include list

You can remove volumes from the include volumes list using the fpolicy volume include remove CLI command.

Step

1. To remove volumes from the include volumes list for a file screening policy, enter the following command:

fpolicy volume include remove PolicyName vol-spec

Example

fpolicy volume include remove default vol4

Files in the volume named vol4 are not screened.

Removing volumes from the exclude list

You can remove volumes from the exclude volumes list using the fpolicy volume exclude remove CLI command.

Step

1. To remove volumes from the exclude volumes list for a file screening policy, enter the following command:

fpolicy vol[ume] exc[lude] remove PolicyName vol-spec

Example

fpolicy volume exclude remove default vol4

Files in the volume vol4 are screened if there are no volumes specified in the include list (for example, if the include list specifies a volume vol1, then even after removing vol4 from the list the volume will not be screened).

Note: If you want to delete specific volumes from the list of files to be included for file screening, use the include (inc) option in place of the exclude (exc) option.

How to specify or replace a list of volumes

Specify or replace an include list and an exclude list.

Next topics

Setting the include volumes list on page 196 Setting the exclude volumes list on page 196

Setting the include volumes list

You can set the include volumes list using the fpolicy volume include set CLI command.

Step

1. To set or replace the entire volume include list for a file policy, enter the following command:

```
fpolicy volume include set PolicyName vol-spec
```

The new list of volumes you enter with this command replaces the existing list of included volumes so that only the new volumes are included in the screening.

Note: Turn off the include list to no volumes by using the set option; for example,

```
fpolicy vol inc set PolicyName ""
```

However, this has the same effect as disabling the policy.

Setting the exclude volumes list

You can set the exclude volumes list using the fpolicy volume exclude set CLI command.

Step

1. To set or replace the entire volume exclude list for a file policy, enter the following command:

```
fpolicy volume exclude set PolicyName vol-spec
```

The new list of volumes you enter with this command replaces the existing list of excluded volumes so that only the new volumes are excluded from screening.

How to reset the volumes in a list

You can specify or replace volumes in the include or exclude volume list.

Next topics

Resetting the include volumes list on page 197
Resetting the exclude volumes list on page 197

Resetting the include volumes list

You can reset the include volumes list using the fpolicy volume include reset CLI command

Step

1. To reset all entries from the exclude or include list for a file policy to the default values, enter the following command:

```
fpolicy volume include reset PolicyName
```

This command resets all the entries in the include list. That is, all the volumes listed in the include list are removed

Resetting the exclude volumes list

You can reset the exclude volumes list using a CLI command.

Step

1. To reset all entries from the exclude list for a file policy to the default values, enter the following command:

```
fpolicy vol[ume] exc[lude] reset PolicyName
```

Here, all the volumes listed in the exclude list are removed.

What screening by extension is

FPolicy enables you to restrict a policy to a certain list of file extensions, by including or excluding extensions that needs to be screened.

Using the include list, you can request notifications for the specified file extensions.

You can provide both an include list and an exclude list. The extensions are first checked in the exclude list. If the requested file's extension is not in the exclude list, the include list is checked. If the file extension is listed in the include list, the file is screened. If the file extension is not listed in the include list, the request is allowed without screening.

Note: The maximum length of file name extension supported for screening is 260 characters.

Screening by extensions is based only on the characters after the last period (.) in the file name. For example, for a file named file1.txt.name.jpg, file access notification takes place only if a file policy is configured for the .jpg extension.

The screening by extension feature is policy-based. Therefore, you can specify different extensions for different policies.

The default extension lists for a file policy are as follows:

- All file extensions are listed in the include list.
- No file extensions are listed in the exclude list.

You can perform the following operations on the exclude and include lists:

- Reset or restore the extension list to the default list.
- Set or replace the existing list with a new extensions list.
- Add an extension to the include or exclude list.
- Remove an extension from the include or exclude list.
- Show or display the extension in an include or exclude list.
- Display the list of extensions for a file policy using wildcard characters.

From the command line, you can display or change the list of included and excluded extensions.

The command syntax to reset or display the file extension list is as follows:

```
fpolicy extensions { include | exclude } { reset | show } PolicyName
```

The command syntax to work with file extension is as follows:

```
fpolicy extensions { include | exclude } { set | add | remove } PolicyName
ext-list
```

include is used to make changes to the include list.

exclude is used to make changes to the exclude list.

reset is used to restore the file extension list to the default list.

show is used to display the exclude or include list as entered.

set is used to replace the existing list with a new list of extensions.

add is used to add an extension to the exclude or include list.

remove is used to remove an extension from the exclude or include list.

PolicyName is the name of the file policy.

ext-list is the list of extension that you want to change.

Note: Extension-based screening is not performed for directory operations such as directory create, directory delete, and directory rename.

Next topics

Wildcard information for screening with extensions on page 199

How to display the list of extensions on page 199

How to add extensions to the list on page 200

How to remove extensions from the list on page 201

How to set or replace a list of extensions on page 202

How to reset the extensions in the list on page 203

Wildcard information for screening with extensions

You can use the question mark (?) wildcard to specify the extension.

If the question mark (?) wildcard character is used in the beginning of the string, it stands for a single character. At the end of the string, it stands for any number of characters.

For example:

- Entering ?s in a list of file extensions to include for file screening includes all file extensions that have two characters ending with s (such as as and js extensions).
- Entering ??m in a list of file extensions to include for file screening includes all file extensions that have three characters ending with m (such as htm and vtm extensions).
- Entering j? in a list of file extensions to include for file screening includes all file extensions that begin with j (such as js, jpg, and jpe extensions).

How to display the list of extensions

You can display the list of included and excluded extensions using the fpolicy extensions CLI command.

Next topics

Displaying the list of extension in the include list on page 199 Displaying the list of extension in the exclude list on page 200

Displaying the list of extension in the include list

You can display the list of extensions in the include extensions list using the fpolicy extensions include show CLI command.

Step

1. To display the list of included file extensions for a file policy, enter the following command:

fpolicy extensions include show PolicyName

When you enter this command, Data ONTAP responds with a list of extensions from the include list for the file you specified.

Displaying the list of extension in the exclude list

You can display the list of extensions in the exclude extensions list using the fpolicy extensions exclude show CLI command.

Step

1. To display the list of excluded file extensions for a file policy, enter the following command:

```
fpolicy extensions exclude show PolicyName
```

When you enter this command, Data ONTAP responds with a list of extensions from the exclude list for the file you specified.

How to add extensions to the list

You can add extensions to the list of included and excluded extensions using the fpolicy extensions CLI command.

Next topics

Adding extensions to the include list on page 200 Adding extensions to the exclude list on page 201

Adding extensions to the include list

Add extensions to the include extensions list using the fpolicy extensions include CLI command.

Step

1. To add file extensions to the list of file extensions to be screened for a file policy, enter the following command:

fpolicy extensions include add PolicyName ext-list

Example

```
fpolicy ext inc add imagescreen jpg,gif,bmp
```

After the extensions are added to the list, the policy imagescreen performs screening for any files with file extension . jpg, .gif, or .bmp.

The file extensions you add to an include list will always be screened by the file screening server when that policy is enabled.

Adding extensions to the exclude list

You can add extensions to the exclude extensions list using the fpolicy extensions exclude CLI command.

Step

1. To add file extensions to the list of file extensions to be excluded from file screening for a file policy, enter the following command:

fpolicy extensions exclude add PolicyName ext-list

Example

fpolicy ext exc add default txt,log,hlp

When the extensions are added to the list, the modified policy will no longer screen .txt, .log, and .hlp files to be screened by the file screening server.

The file extensions you add to an exclude list will not be screened by the file screening server when that policy is enabled (unless contradicted by another enabled file screening policy).

How to remove extensions from the list

You can remove extensions from the list of included and excluded extensions using fpolicy extensions CLI command.

Next topics

Removing extensions from the include list on page 201 Removing extensions from an exclude list on page 202

Removing extensions from the include list

You can remove extensions from the include extensions list using the fpolicy extensions include remove CLI command.

Step

1. To remove file extensions from the include extensions list for a file policy, enter the following command:

fpolicy extensions include remove PolicyName ext-list

Example

fpolicy ext inc remove default wav

Files with a .way extension are not screened.

This command removes entries from the current file extension list.

Removing extensions from an exclude list

You can remove extensions from the exclude extensions list using the fpolicy extensions exclude remove CLI command.

Step

1. To remove file extensions from the exclude extensions list for a file screening policy, enter the following command:

fpolicy extensions exclude remove PolicyName ext-list Example

fpolicy ext exc remove default wav

Files with a .way extension are screened.

This command removes entries from the current file extension list.

How to set or replace a list of extensions

You can set or replace the list of included and excluded extensions using the fpolicy extensions CLI command

Next topics

Setting the include extensions list on page 202 Setting the exclude extensions list on page 203

Setting the include extensions list

You can set the include extensions list using the fpolicy extensions include set CLI command.

Step

1. To replace the entire include list for FPolicy, enter the following command:

```
fpolicy extensions include set PolicyName ext-list
```

On entering this command, the new list of extensions you specified with this command replaces the existing list of excluded extensions so that only the new extensions are included for screening.

Note: You can also set the include list to not screen file extensions by using the set option. For example,

fpolicy ext inc set PolicyName ""

When this command is used, no files will be screened.

Setting the exclude extensions list

You can set the exclude extensions list using the fpolicy extensions exclude set CLI command.

Step

1. To replace the entire exclude list for FPolicy, enter the following command:

```
fpolicy extensions exclude set PolicyName ext-list
```

On entering this command, the new list of extensions you specified with this command replaces the existing list of excluded extensions so that only the new extensions are excluded from screening.

How to reset the extensions in the list

You can reset the list of included and excluded extensions using the fpolicy extensions CLI command

Next topics

Resetting the include extensions list on page 203
Resetting the exclude extensions list on page 203

Resetting the include extensions list

You can reset the include extensions list using fpolicy extensions include reset CLI command.

Step

1. To reset all entries from the include list for FPolicy to the default values, enter the following command:

```
fpolicy extensions include reset PolicyName
```

This command restores the file extension include list to the default list.

Resetting the exclude extensions list

You can reset the exclude extensions list using the fpolicy extensions exclude reset CLI command

Step

1. To reset all entries from the exclude list for FPolicy to the default values, enter the following command:

```
fpolicy extensions exclude reset PolicyName
```

This command restores the file extension exclude list to the default list.

How to manage the file screening server

You can display important file screening server information using the CLI commands. You can also assign servers to the secondary server list, or remove them from the secondary server list.

Next topics

Displaying the file screening server information on page 204
Disabling the connection on page 204
What secondary servers are on page 205

Displaying the file screening server information

You can display important file screening server information using the fpolicy servers show CLI command. The information displayed includes the list of servers registered, the list of connected servers, and the features enabled.

The command displays the following information about a particular FPolicy:

- · The list of FPolicy servers registered
- The list of FPolicy servers connected
- Total time for which the server has been connected
- The list of features enabled for the server supported in Data ONTAP 7.3
- The status of the primary server
- The status of the secondary server

Step

1. To display the status of file screening servers, enter the following command:

```
fpolicy servers show PolicyName
```

When you enter this command, Data ONTAP returns the status of the file screening servers for the policy you specified.

Disabling the connection

When a server's connection is disabled, the connection between the FPolicy server and the storage system are terminated.

Step

1. To disable the connection to a file screening server, enter the following command:

```
fpolicy servers stop PolicyName server-IP-address
```

PolicyName is the name of the policy that you want to disable the connection for.

server-IP-address is the list of FPolicy server IP addresses that you want to disable from the storage system.

The server's connection is disabled.

What secondary servers are

FPolicy servers can be used as both primary and secondary servers. You can designate a particular FPolicy server or a list of FPolicy servers as secondary servers using the fpolicy options command.

The storage system uses the secondary servers to enforce file policies only if no primary servers are available. That is, when an FPolicy server is designated as a secondary server, the storage system never uses it as long as a primary server is available. If all primary servers are unavailable, the storage system uses any secondary servers connected to the storage system until a primary server becomes available again.

Any FPolicy server not classified as secondary is considered a primary server.

Next topics

Assigning secondary servers list on page 205 Removing all secondary servers on page 206

Assigning secondary servers list

You can assign or designate a particular FPolicy server as a secondary server using the fpolicy options secondary_servers CLI command.

Step

1. To designate a list of secondary servers to be used when the primary file screening server is unavailable, enter the following command:

```
fpolicy options PolicyName secondary_servers [server_list]
```

PolicyName is the name of the policy that you want the secondary server to use.

server_list is the list of FPolicy server IP addresses that you want to designate as secondary servers. Use a comma (,) to separate the IP addresses. A connection from any of the IP addresses listed in this field is classified by the storage system as a secondary server.

When you enter this command, the specified servers are designated as secondary servers for the specified FPolicy.

Note: When the comma-separated list of IP addresses is provided, any existing list is replaced with the new list. Therefore, to retain existing secondary servers, you must add their IP addresses to the new list.

Removing all secondary servers

You can convert all secondary servers to primary servers using the fpolicy options CLI command.

Step

1. To convert all secondary servers to primary servers, enter the following command:

```
fpolicy options PolicyName secondary_servers ""
```

PolicyName is the name of the policy that you want the secondary server to use.

After running this command, all FPolicy servers assigned to be secondary FPolicy servers become primary FPolicy servers.

How to monitor operations using FPolicy

You use FPolicy to monitor file operations. Tasks to manage file operations monitoring include adding, removing, or setting the list of operations to be monitored.

Next topics

Adding operations to the monitor list on page 206 Removing operations from the monitor list on page 207 Setting or replacing the list of monitored operations on page 208

Adding operations to the monitor list

For FPolicy to implement native file blocking, it first needs to monitor operations that need to be blocked natively. You can do that by adding the operations to the list of operations monitored.

Step

1. To add operations to the list of monitored operations to be screened for FPolicy, enter the following command:

```
fpolicy mon[itor] add PolicyName [-p {cifs|nfs|cifs,nfs}] [-f] op-spec
PolicyName is the name of the policy you want to add operations to.
```

-p {cifs|nfs|cifs,nfs} specifies the protocols you want to enable monitoring for. Use cifs to monitor CIFS requests, nfs to monitor NFS requests, or cifs, nfs to monitor both. If the protocol information is not specified in the monitor command, the storage system sends notifications for both CIFS and NFS protocols. When a particular operation is set for CIFS operations and then later set for NFS operations, the operations are monitored for requests from both the protocols. However, when the operation is removed from one of the protocols, monitoring for that operation stops for both the protocols. When a particular operation is set only

for CIFS and not on NFS, this operation is monitored for both the protocols. When this operation is removed from the list of monitored operations for NFS it also stops monitoring for CIFS.

-f forces the policy to be enabled even if there are no servers available to enforce the policy.

op-spec is the list of operations you want to add. You can also choose to set the monitoring options for all operations together, by replacing the list of operations with all option.

The specified operation is added to the list of monitored operations.

Example

The following command adds read, write, and lookup operations to the list of monitored operations:

fpolicy mon add p1 read, write, lookup

Once enabled, the policy p1 monitors read, write, and lookup operations along with any other operations that have been set previously.

Removing operations from the monitor list

You can remove operations from the list using fpolicy monitor remove CLI command. When you remove an operation from the list of monitored operations, the particular operation is not monitored by the FPolicy.

Step

1. To remove operations from the list of monitored operations to be screened for FPolicy, enter the following command:

```
fpolicy mon[itor] remove PolicyName [-p {cifs|nfs|cifs,nfs}] [-f] opspec
```

The specified operation is removed from the list of monitored operations.

Example

To stop monitoring read and setattr operations and to remove them from the list of monitored operations, enter the following command:

```
fpolicy mon remove pl read, setattr
```

Once enabled, the policy p1 stops monitoring read and setattr operations and removes these two operations from the list of operations monitored.

Setting or replacing the list of monitored operations

You can replace the list of monitored operations using the fpolicy monitor set CLI command.

Step

1. To replace the list of operations monitored, enter the following command:

```
fpolicy mon[itor] set PolicyName [-p {cifs|nfs|cifs,nfs } ] [-f] op-spec
```

The list of operations to be monitored is replaced with the new set of operations.

Example

To set or replace the list of operations monitored, enter the following command:

fpolicy mon set pl read, setattr

Once enabled, the policy p1 monitors only read operations and setattr operations. Any existing monitored lists will be replaced by this one.

What the different CLI commands are

The following table lists the FPolicy CLI commands.

Input Name	Description
fpolicy help[cmd]	Used to show the CLI help
fpolicy create PolicyName PolicyType	Used to create a file policy
fpolicy destroy PolicyName	Used to delete a file policy
fpolicy enable PolicyName [-f]	Used to enable a file policy
fpolicy disable PolicyName	Used to disable a file policy
fpolicy show PolicyName	Used to display a file policy
fpolicy servers show PolicyName	Used to display the FPolicy server status information
fpolicy servers stop PolicyName IP-address	Used to disable the FPolicy server connection
fpolicy options PolicyName required {on off}	Used to turn on or turn off the required option for a file policy
<pre>fpolicy options PolicyName secondary_servers[IP-address[,IP-address]*]</pre>	Used to configure options for FPolicy server
<pre>fpolicy extension {exclude include} show PolicyName</pre>	Used to display extensions in the include or exclude lists

Input Name	Description
fpolicy extension {exclude include} reset PolicyName	Used to reset extensions in the include or exclude lists
<pre>fpolicy extension {exclude include} add PolicyName ext-list</pre>	Used to add extensions to the include or exclude lists
<pre>fpolicy extension {exclude include} remove PolicyName ext-list</pre>	Used to remove extensions from the include or exclude lists
<pre>fpolicy extension {exclude include} set PolicyName ext-list</pre>	Used to set or replace all the extensions in the include or exclude lists
<pre>fpolicy volume {include exclude} show PolicyName</pre>	Used to display volumes in the include or exclude lists
<pre>fpolicy volume {include exclude} reset PolicyName</pre>	Used to reset volumes in the include or exclude lists
<pre>fpolicy volume {include exclude} add PolicyName vol_spec</pre>	Used to add volumes to the include or exclude lists
<pre>fpolicy volume {include exclude} remove PolicyName vol_spec</pre>	Used to remove volumes from the include or exclude lists
<pre>fpolicy volume {include exclude} set PolicyName vol_spec</pre>	Used to set or replace all the volumes in the include or exclude lists
<pre>fpolicy volume {include exclude} eval PolicyName vol_spec</pre>	Used to display the volumes in the include or exclude lists evaluating volumes specified using the wildcard character
<pre>fpolicy monitor add PolicyName [-p {nfs cifs cifs,nfs}][-f] op_spec [,op_spec]</pre>	Used to add operations to the list of operations that are being monitored
<pre>fpolicy monitor remove PolicyName [-p {nfs cifs cifs,nfs}] [-f] op_spec [,op_spec]</pre>	Used to remove files from the list of files that are being monitored
<pre>fpolicy monitor set PolicyName [-p {nfs cifs cifs,nfs}][-f] op_spec [,op_spec]</pre>	Used to set or replace the list of files that are being monitored

FAQs, error messages, warning messages, and keywords

This section describes frequently asked questions and error and warning messages.

Next topics

Frequently asked questions (FAQs) on page 210

Error messages on page 215

Warning messages on page 219

Keywords list for screening operations on page 223

Frequently asked questions (FAQs)

General FAQs and FAQs about access rights and permissions and other specific subjects are covered in this section

Next topics

General FAQs on page 210

Access rights and permissions FAQs on page 212

Performance FAQs on page 212

File screening FAQs on page 213

FPolicy server FAQs on page 215

General FAQs

Is there a limit currently to the total number of active file policies?

Yes, currently the limit to the total number of active file policies is 20 per vFiler unit.

If two policies are created, will the storage system handle the requests in a sequential or parallel manner?

When two policies are created, the storage system handles the requests sequentially.

Can you prioritize the policies so that one is favored over the other?

The existing implementation of FPolicy does not support ordering of policies.

Can multiple policies be created for different FPolicy servers?

Yes. It is possible to create multiple policies and use individual policies for different FPolicy servers. For example, you can create two policies, one for the FLM and one for NTP, and point the two FPolicy servers to these two policies.

The order in which notifications will be sent is the same as the order in which policies are listed under the fpolicy command. This is the reverse of the order in which policies are created on the storage system. For example, if policy p1 was created followed by policy p2, notifications will be sent to p2 and subsequently to p1.

It is important to note the difference between "multiple file policies" and "multiple servers."

Some problems you might face are as follows:

• Currently the FPolicy engine sends requests sequentially (instead of sending them parallel) for the multiple policies so they might see double the performance degradation.

What licenses are needed to be enabled for FPolicy to work on your storage systems?

CIFS needs to be licensed and set up on the storage system for FPolicy to work.

Why do I need CIFS to be licensed and set up even on an NFS-only storage system?

An FPolicy server wields a lot of power, and it is authenticated using CIFS security to ensure that the server has Backup-Operator privileges (or more) on the storage system. Therefore, CIFS needs to be licensed even in an NFS exclusive environment. Also, to apply file policies to NFS files, you must also have NFS licensed and running.

Does FPolicy have any limitations?

Yes, the following are FPolicy limitations:

- FPolicy supports only CIFS and NFS protocols. However, there are some operations for the CIFS
 and NFS protocols that FPolicy does not monitor, such as, NFSv4 operations related to locking
 and delegation, session-related operations (SMB_COM_SESSION_SETUP_ANDX), operations
 not relevant to file system activity (print-related operations), and so on.
- FPolicy does not support other protocols such as FTP, HTTP, WebDAV, FileIO, and so on.
- You cannot configure CIFS and NFS operations separately on the same policy.

Following are the screening limitations of FPolicy:

- You must set up file screening on an entire volume. You cannot screen individual qtrees and directories.
- FPolicy supports screening of CIFS operations on alternate data streams. However, FPolicy does not support screening of NFS operations on alternate data streams.
- When you register multiple servers, the policy of all the servers connected changes based on the settings of the server that registers last.
- Multiple instances of an FPolicy server from the same IP address cannot register to same policy.
- If the CIFS system resources used by FPolicy are exhausted, the CIFS screening by the FPolicy engine will stop.

Is FPolicy dependent upon Virus Scanning (vscan)?

FPolicy runs independently from vscan operations. FPolicy occurs before virus scanning operations, so that paths indicated in stub files (such as symlinks) can be traversed to load the actual file, instead of just scanning the stub file. Vscan operations are independent of file policies. That is, vscan can open and scan files that have been blocked by file policies. Therefore, there is no interdependence between FPolicy and vscan.

Where are FPolicy settings saved?

FPolicy settings are saved in the registry.

What happens when a user attempts to make changes to a migrated file that was accessed with read permission?

The FPolicy server has to do the following:

For CIFS and NFS version 4, it can recall the file at open time if the open request is for write (or read-write) access mode. Alternatively, it can do it when the write request is made. However, for this option the server has to be registered to monitor write operations.

Since NFSv2 and NFSv3 versions do not have an open call, the HSM server will need to register to monitor read and write operations. The HSM server will have to recall the file when it receives the write request. For read operations, the HSM server has an option of either using pass through read or write.

Access rights and permissions FAQs

What is the minimal access right for an account that connects to the storage systems, and registers as an FPolicy server listening to FPolicy events?

The FPolicy server needs backup privileges at least, to register to the storage system.

What is the minimal access right for an account that connects to the storage system and scans q-tree ACLs?

The right to scan ACLs is granted to CIFS logins using standard Windows methods. If you are connected to the storage system using an account that is a member of the Backup Operators or Administrators groups you can use the FILE_FLAG_BACKUP_SEMANTICS open mode, which allows you to access any file, regardless of security.

Performance FAQs

What factors does the performance of an FPolicy depend on?

The following are some of the factors that the performance of FPolicy depends on:

- Number of Operations (like read, open, close, and so on) being monitored
- Number of registered FPolicy servers (load sharing)
- Number of Policies screening the same operation
- Network bandwidth between storage system and FPolicy server (round-trip time of the screen request)
- Response time of the FPolicy server

How can we measure how FPolicy traffic is divided between CIFS and NFS traffic?

The output of the FPolicy command run at the storage system contains a counter for the total number of request screened by that particular file policy. However, currently there is no way to understand the division between CIFS and NFS traffic.

Every client request that goes through FPolicy screening generates some extra CIFS requests for internal FPolicy communication. This is true for both CIFS and NFS clients requests. Currently there is no way to measure this extra traffic.

If you switch on FPolicy before doing recalls, does that have an impact on performance?

Yes, switching on FPolicy before doing any recalls has an impact on the performance. The impact of the performance depends primarily on how FPolicy is configured. It is therefore recommended that you do not turn on FPolicy before doing any recalls.

When there are two FPolicy servers registered to a storage system with different performance levels, does the performance of the slower server affect the performance of the fast server?

Yes, the performance of the slower server does affect the performance of the faster server. It is therefore recommended that servers with same capabilities are used while connecting to a storage system.

Do we have a metric to determine the additional load on the CPU when FPolicy is enabled?

No, such data is not currently available for FPolicy.

File screening FAQs

How does file screening work?

File screening policies are used to specify files or directories on which one wants to put some restrictions. Upon receiving a file operation request (such as open, write, create, or rename), Data ONTAP checks its file screening policies before permitting the operation.

If the policy specifies screening for that file based on its extension, the file name is sent to the file screening server to be screened. The file screening server applies policies to the file name to determine whether the storage system should allow the requested file operation. The file screening server then sends a response to the storage system to either allow or block the requested file operation.

Does the performance of the system go down while using file screening?

Yes, the performance of the system goes down while using file screening.

Can we use default options for setting file screening options?

There is a master setting for all file policies, the fpolicy.enable option, which is on by default. When an individual FPolicy is newly created, it is off by default. This allows the system administrator to fully configure the policy before activating it. Whether something is actually screened or not, depends upon whether or not there is a supported external file screening server running and accessible to the storage system. Remember that an external file screening server is a requirement in order to use FPolicy.

What happens if I create screening policies but do not have a screening server?

If you enable a policy when no file screening servers are available, nothing happens. However, if you have turned on the fpolicy option required for that policy, then access to files specified in that policy will be denied. The setting for 'required' on a policy is set to off by default.

How can I display the status of file screening servers?

You can display the status of the file screening server by using the following command:

fpolicy servers show PolicyName

Data ONTAP returns the status of the file screening server for the policy you specified.

Can I specify secondary screening servers? If yes, how can I do it?

Yes, you can designate a list of secondary servers to be used when the primary file screening server is unavailable. Use the following command:

```
fpolicy options PolicyName secondary servers [ server list ]
```

Any FPolicy server that connects to the storage system will be a primary server unless its IP address is in the secondary server list. Secondary servers will never be used by the storage system unless all primary servers are unavailable.

How can I disable the connection to a file screening server?

You can disable the connection to a file screening server by using the following command:

fpolicy servers stop PolicyName server-IP-address

Is FPolicy file screening applied at the volume level or at the qtree level?

FPolicy file screening is applied at the volume level, and not at the qtree level.

FPolicy server FAQs

What is the difference between primary and secondary servers?

Primary servers are active servers that screen client requests. Secondary servers are registered for the fail safe mode. When all the primary servers are down, all the secondary servers start screening requests.

How can I register a secondary server?

To use a server as a secondary server, you have to add the server IP in the secondary server list.

When the server connects, it will be treated as secondary.

Error messages

The following table contains a list of common FPolicy error messages, probable causes, and recommended actions, if any.

Error message	Cause	Recommended action
fpolicy.fscreen.server. connectError severity="ERR"	This error is generated when the storage system encounters an error while attempting to communicate with an FPolicy (file policy) server. The communication failure will cause the storage system to break its connection with this server. The error can be due to network problems, security settings on the FPolicy server that deny access to the storage system, or hardware/software problems on the FPolicy server. The problem can also occur if a low memory situation on the storage system prevents the storage system from obtaining resources needed to perform the operation.	Examine the error code to see if it helps point to the use of the problem. Examine the event logs of the FPolicy (file policy) server to learn if it has disconnected from the storage system and why. Examine the storage system's syslog for error messages which could provide clues. Correct any problems that are found such as network errors or hardware problems on the FPolicy server. Check to see if a software patch has been recently installed on the FPolicy server which may have changed security settings.

Error message	Cause	Recommended action
fpolicy.fscreen.server. closeError severity="ERR"	This error is generated when the storage system encounters an error while attempting to stop communication with an FPolicy (file screening) server. The error can be due to network problems or hardware/software problems on the FPolicy server.	Examine the error code to see if it helps point to the cause of the problem. Examine the event logs of the FPolicy (file policy) server to learn if it has disconnected from the storage system and why. Correct any problems that are found such as network errors or hardware problems on the FPolicy server. This error may not be an error. The storage system may be ending communication with the server because an error has occurred in an earlier attempt to communicate with the server. The error that occurs during the close of the connection may be a continuation of that error condition.
fpolicy.fscreen.server. requestError severity="ERR"	This error is generated when the storage system encounters an error while attempting to send a notification request to an FPolicy (file policy) server. The error can be due to network problems or hardware/software problems on the FPolicy server. The storage system will retry this notification with another server of this policy if the policy has multiple servers. Otherwise, the storage system will proceed based on the policy's setting for the required option. If the required setting is on, the storage system will deny the request. If required is off, the storage system will allow the client request to proceed.	Examine the error code to see if it helps point to the cause of the problem. Examine the event logs of the FPolicy (file policy) server to learn if it has disconnected from the storage system and why. Correct any problems that are found such as network errors or hardware problems on the FPolicy server.
fpolicy.fscreen.server. requestRejected severity="ERR"	This error is generated when a storage system's notification request to an FPolicy (file policy) server is rejected by the FPolicy server. The error can be due to software problems on the FPolicy server.	Examine the error code to see if it helps point to the use of the problem. Examine the event logs of the FPolicy (file policy server to learn if it has created an error to explain the problem. The FPolicy server may have detected an internal error, or may be unable to accept more requests.

Error message	Cause	Recommended action
fpolicy.fscreen.server. pingRejected severity="ERR"	From time to time if the FPolicy server connection is idle the storage system will send a status request to learn the status of the FPolicy server. This error is generated when a storage system's status request to an FPolicy server gets an error. This error can occur if the storage system is unable to contact the FPolicy server, or the error can occur if the server returns an error to the storage system's request. The error can be due to network problems or hardware/software problems on the FPolicy server. The storage system will break its connection with the server when this request fails.	Examine the error code to see if it helps point to the cause of the problem. Examine the event logs of the FPolicy (file policy) server to learn if it has disconnected from the storage system and why. Correct any problems that are found such as network errors or hardware problems on the FPolicy server.
fpolicy.fscreen.server. completionUnexpecte dState severity="ERR"	This error occurs when the FPolicy server has completed a screen request and returned a completion. However, the internal storage system state for this request is not valid. This completion message is ignored by the storage system.	
fpolicy.fscreen.server. requestStatusError severity="ERR"	This error occurs when the FPolicy server has accepted a screen request but has not reported the completion of the request. The storage system will check on the status of incomplete requests. If the storage system is unable to send the request, or if the server does not support the request, this error occurs. The error can be due to network problems or hardware/software problems on the FPolicy server which have broken the connection of the server to the storage system.	Examine the error code to see if it helps point to the cause of the problem. Examine the event logs of the FPolicy (file policy) server to learn if it has disconnected from the storage system and why. Correct any problems that are found such as network errors or hardware problems on the server.
fpolicy.fscreen.server. connecting.internalErr or severity="ERR"	This error occurs when the file policy server registers with the storage system and offers to work as an FPolicy server or the storage system. The storage system has not been able to get memory it needs to hold information related to the FPolicy server.	Contact technical support.

.pathError severity="ERR"

encounters an error as it builds a path for the fscreen server to use in accessing a file. Possible errors include: path is too long or Unicode conversion problems. The user will access a file with a path like this: shareName\directories\fileName

The storage system will build an absolute path for the server from the root of the storage system: ontap_admin\$\vol \volName\sharePath \directories\FileName. Normally this is an internal storage system error (bug).

Error message	Cause	Recommended action
fpolicy.fscreen.server. requestTO severity="ERR"	This error occurs when the server has accepted a file screen notification but has not reported the completion of the request. The storage system will check on the status of incomplete requests after a timeout has elapsed. If the server disavows all knowledge of a request which it has accepted but not completed, the request is considered to be timed out. Typically this indicates a server problem.	Examine the event logs of the server to learn if it has noted any problems. Contact the server software vendor to learn if their product supports the request-status query. The storage system only times out requests which the server has accepted. It will not time out a request as long as the server affirms that it is still working on the request. The storage system sends request-status messages to the server to learn the status of requests which may have timed out.
fpolicy.server.fqdn.un avail severity="ERR"	This message occurs when the Reverse DNS lookup for the FPolicy server IP address fails and the storage system cannot determine the FPolicy server's Fully Qualified Domain Name (FQDN). If the FPolicy server is running on the Microsoft Longhorn OS, the storage system requires the FPolicy server FQDN for authenticating itself to the FPolicy server.	Verify the Reverse DNS lookup configuration on the DNS server.

Warning messages

The following table contains a list of common FPolicy warning messages, probable causes, and recommended actions if any.

Warning	Cause	Recommendation
fpolicy.fscreen.server.c onnectedNone severity="WARNING"	This warning occurs when no FPolicy (file screening) servers are connected to the storage system. This can be significant if the policy is required because the storage system will reject various operations on files and directories. This can be significant if the policy is not required because the storage system will allow various operations on files and directories although no server has approved the operation.	Examine the event logs of the FPolicy server(s) to learn why they have disconnected from the storage system. Examine the storage system's syslog for error messages which could provide clues. Correct any problems that are found such as network errors or hardware problems on the FPolicy server.

Warning	Cause	Recommendation
fpolicy.fscreen.server.c ompletionRequestLost severity="WARNING"	This warning occurs when the FPolicy (file policy) server has completed a screen request and returned a completion. However, the storage system cannot find the request which is being reported as complete.	If the problem is occurring repeatedly, a line trace can help in diagnosis. The filer command pktt can be used to get a line trace.
	This warning is an indication that the FPolicy server and storage system are out of synchronization. The problem can happen because of timing issues. For example, the completion can arrive shortly after file screening has been disabled on the storage system and all requests which had been waiting for completion have been allowed to continue. Or the FPolicy server has returned a completion prior to accepting the screen request. Or the request may have timed out, causing the storage system to ask for status on the request. If the FPolicy server was not able to find the request, the storage system allows the request to continue. Then, if the FPolicy server later completed the request, that request is not found.	

Warning	Cause	Recommendation	
fpolicy.fscreen.server.c ompletionInconsistent severity="WARNING"	This warning occurs when the FPolicy (file policy) server has completed a screen request and returned a screen completion. However, the file path in the completion message does not match the file path for which a screen request was made by the storage system.	If the problem is occurring repeatedly, a line trace can help in diagnosis. The filer command pktt can be used to get a line trace.	
	When the storage system makes a screen request it provides the FPolicy server with both a file path and a request ID.		
	The FPolicy server has sent a screen completion message to the storage system which has a valid request ID, however, the file path does not match the one given by the storage system in the screen request.		
	This problem may be a software defect in the FPolicy server, or in the storage system. Or, if the FPolicy server is serving a group of storage systems it is possible that it is completing requests but sending the completions to the wrong storage system, such that the request ID is valid in the storage system but the file path is not associated with the request ID.		
fpolicy.fscreen.server.c onnecting.badOperatio nList severity="WARNING"	This warning occurs when the FPolicy server provides the storage system with a list of operations for which it wishes to receive notifications. Examples of operations includes renaming a file or directory, creating a file, opening or closing a file and so on. The list can be provided to the storage system when the server registers, or at a later time. This warning has occurred because the list of operations provided by the FPolicy server includes operations for which the storage system does not provide notifications. The storage system ignores the list provided by the server.		

Warning	Cause	Recommendation
fpolicy.fscreen.vol.i2p. off severity="WARNING"	This message occurs when an FPolicy server registers with the system for a file policy and required inode-to- path name translation for file policy notifications against NFS requests. However, the volume monitored by the file policy has inode-to-pathname translation disabled. The FPolicy fails to generate a file path for NFS requests in case inode-to-pathname translation is disabled on the volume.	Turn off the no_i2p option by issuing the following command: vol options volumeName no_i2p off This command enables the inode-to-path name translation for files on the volume. This operation might fail if a nondisruptive volume movement is being performed on the target volume.
fpolicy.fscreen.server.u nexpectedFileDataRes ponse severity="WARNING"	This message occurs when the FPolicy server sends file data to the system for a RRD (Read Redirect) request but the system cannot find the request for which file data sent. This warning is an indication that the FPolicy server and system are out of synchronization. This problem can happen because of timing issues. For example, the file data might arrive shortly after file screening is disabled on the system and all requests that are waiting for completion have been allowed to continue; or the FPolicy server has returned a file data before accepting the screen request; or the request might have timed out, causing the system to ask for status on the request. Or, if the FPolicy server was not able to find the request, the system would allow the request to continue. Then, if the FPolicy server later sends file data for the request, that request would not be found by the system.	If the problem occurs repeatedly, use packet trace to help in diagnosis. Use the pktt command to get packet trace. For example: pktt start all -i FpolicyServerIP

Keywords list for screening operations

All operations can be monitored in three ways. They can be set using a bitmask while registering an FPolicy server, they can be configured by using an ONTAPI call, and they can be configured using a CLI.

You can use different keywords to configure monitoring of the different operations supported by FPolicy. The following table lists the keywords used for each of the operations, when you attempt to configure them with the three options.

Operation name	CLI Keyword	ONTAPI keyword	Registration key words	s
			Bit	Value
File open	open	file-open	FS_OP_OPEN	0x0001
File create	create	file-create	FS_OP_CREATE	0x0002
File close	close	file-close	FS_OP_CLOSE	0x0008
File rename	rename	file-rename	FS_OP_RENAME	0x0004
File delete	delete	file-delete	FS_OP_DELETE	0x0010
File write	write	file-write	FS_OP_WRITE	0x4000
File read	read	file-read	FS_OP_READ	0x2000
File link	link	link	FS_OP_LINK	0x0400
File symlink	symlink	symlink	FS_OP_SYMLINK	0x0800
Directory delete	directory-delete	directory-delete	FS_OP_DELETE_DI R	0x0020
Directory rename	directory-rename	directory-rename	FS_OP_RENAME_DI R	0x0040
Directory create	directory-create	directory-create	FS_OP_CREATE_DI R	0x0080
File lookup	lookup	lookup	FS_OP_LOOKUP	0x1000
Get attribute	getattr	getattr	FS_OP_GETATTR	0x0100
Set attribute	setattr	setattr	FS_OP_SETATTR	0x0200

File sharing between NFS and CIFS

You can optimize Data ONTAP to share files quickly between NFS and CIFS clients without errors.

Next topics

About NFS and CIFS file naming on page 225

Enabling file name character translation between UNIX and Windows on page 228

Clearing a character mapping from a volume on page 229

About file locking between protocols on page 230

About read-only bits on page 230

Managing UNIX credentials for CIFS clients on page 231

Managing the SID-to-name map cache on page 243

Using LDAP services on page 245

Enabling Storage-Level Access Guard using the fsecurity command on page 260

Auditing system access events on page 265

Controlling CIFS access to symbolic links on page 283

Optimizing NFS directory access for CIFS clients on page 289

Preventing CIFS clients from creating uppercase file names on page 291

Accessing CIFS files from NFS clients on page 291

Allowing CIFS clients without UNIX "execute" permissions to run .dll and .exe files on page 297

About NFS and CIFS file naming

File naming conventions depend on both the network clients' operating systems and the file-sharing protocols.

The operating system and the file-sharing protocols determine the following:

- Length of a file name
- Characters a file name can use
- Case-sensitivity of a file name

Next topics

Length of file names on page 226

Characters a file name can use on page 226

Case-sensitivity of a file name on page 226

Creating lowercase file names on page 226

How Data ONTAP creates file names on page 227

Controlling the display of dot files from CIFS clients on page 227

Length of file names

Data ONTAP supports different file name lengths for CIFS clients that support the PC long file name format and CIFS clients that support the 8.3 format.

Data ONTAP supports the following file name lengths:

- Maximum of 255 characters for NFS clients and CIFS clients that support the PC long file name format
- Maximum of 8-character file names and 3-character file name extensions for CIFS clients that support the 8.3 format, such as MS-DOS and Windows 3.x clients

Characters a file name can use

If you are sharing a file between clients on different operating systems, you should use characters that are valid in both operating systems.

For example, if you use UNIX to create a file, don't use a colon (:) in the file name because the colon is not allowed in MS-DOS file names. Because restrictions on valid characters vary from one operating system to another, see the documentation for your client operating system for more information about prohibited characters.

Case-sensitivity of a file name

File names are case-sensitive for NFS clients and case-insensitive but case-preserving for CIFS clients.

For example, if a CIFS client creates <code>spec.txt</code>, both CIFS and NFS clients display the file name as <code>spec.txt</code>. However, if a CIFS user later tries to create <code>spec.txt</code>, the name is not allowed because, to the CIFS client, that name currently exists. If an NFS user later creates a file named <code>spec.txt</code>, NFS and CIFS clients display the file name differently, as follows:

- On NFS clients, you see both file names as they were created, Spec.txt and spec.txt, because file names are case-sensitive.
- On CIFS clients, you see Spec.txt and Spec~1.txt. Data ONTAP creates the Spec~1.txt file name to differentiate the two files

Creating lowercase file names

You can set the cifs.save_case option to off to force Data ONTAP to ignore the case in which file names are entered and instead force these names to lowercase text.

About this task

Setting this option to off provides better compatibility between 16-bit applications and some UNIX tools. However, by default, this option is set to on.

Step

1. Enter the following command:

options cifs.save_case off

How Data ONTAP creates file names

Data ONTAP creates and maintains two file names for files in any directory that has access from a CIFS client: the original long name and a file name in 8.3 format.

For file names that exceed the eight character name or the three character extension limit, Data ONTAP generates an 8.3-format file name as follows:

- It truncates the original file name to six characters, if the file name exceeds six characters.
- It appends a tilde (~) and a number, one through five, to file names that are no longer unique after being truncated. If it runs out of numbers because there are more than five similar names, it creates a unique file name that bears no relation to the original file name.
- It truncates the file name extension to three characters.

Example: If an NFS client creates a file named specifications.html, the 8.3 format file name created by Data ONTAP is specif~1.htm. If this name already exists, Data ONTAP uses a different number at the end of the file name. For example, if the NFS client creates another file named specifications_new.html, the 8.3 format of specifications_new.html is specif~2.htm.

Controlling the display of dot files from CIFS clients

Dot files typically do not appear on UNIX-based systems; if you want to provide Windows client systems the option of hiding dot files, set the cifs.show_dotfiles option to off.

About this task

By default, these files are displayed on CIFS client systems, regardless of the Windows Folder Options View setting for showing or hiding hidden files.

Step

1. Enter the following command to set the cifs.show_dotfiles option to off:

```
options cifs.show dotfiles off
```

Dot files on this system can be excluded from display when Windows client users select "Do not show hidden files and folders" from the **View** tab on the Folder Options box. (To display the Folder Options box, in Windows Explorer, select **Tools > Folder Options**.)

Enabling file name character translation between UNIX and **Windows**

If you have legacy file names on both operating systems (Windows and UNIX) that contain characters that are not valid in both operating systems, you can use the charmap command to allow CIFS clients to access files with NFS names that would otherwise not be valid for CIFS.

About this task

When files created by NFS clients are accessed by CIFS clients, the storage system looks at the name of the file and if the name is not a valid CIFS file name (for example, if it has an embedded colon ":" character) the storage system returns the 8.3 file name that is maintained for each file. However, this causes problems for applications that encode important information into long file names.

Therefore, if you are sharing a file between clients on different operating systems, you should use characters in the file names that are valid in both operating systems.

However, if you have legacy file names on both operating systems (Windows and UNIX) that contain characters that are not valid in both operating systems, you can define a map that converts the invalid NFS characters into Unicode characters that both CIFS and certain Windows applications can accept.

For more information, see the na charmap(1) man page.

Note: This functionality supports the CATIA MCAD and Mathematica applications as well as other applications that have this requirement.

Step

1. Enter the following command:

```
charmap [volname [mapspec]]
```

volname specifies the name of a volume on a storage system. If you do not specify a value for volname, the mapping for all volumes is displayed.

Specify mapspec in the following format:

```
hh:hhhh [ ,hh:hhhh]...
```

Each hh represents a hexadecimal value. The first value of each hh pair that is separated by a colon is the hexadecimal value of the NFS character you want to translate, and the second value of each hh pair is the Unicode value that CIFS will use. If you do not specify a value for mapspec, the current mapping, if any, is displayed.

Example

The following command maps characters used by the CATIA application:

charmap desvol 3e:ff76,3c:ff77,2a:ff78,3a:ff79,22:ff7a

This command maps a set of characters (>, <, *, :, ", ?, \, and |) into Japanese Unicode characters that are not normally used as normal characters in file names. This mapping applies to the volume named "desvol."

Character restrictions

Make sure that the Unicode characters that are used to represent invalid or illegal characters are those characters that do not normally appear in file names; otherwise, unwanted mappings will occur.

For example, if you try to map a colon (:) to a hyphen (-), but the hyphen (-) was used in the file name correctly, a Windows client trying to access a file named "a-b" would have its request mapped to the NFS name of "a:b" (not the desired outcome).

Refer to the following list of NFS characters when performing your remapping:

- 22 = double quote (")
- 2a = asterisk (*)
- 3a = colon(:)
- 3c = less than (<)
- 3e = greater than (>)
- 3f = question mark (?)
- 5c = backslash()
- 7c = pipe(|)
- $b1 = (\pm)$

In addition, if you attempt to create or rename a file or directory from a CIFS client with a name that contains the Unicode character 0x0080, an error message appears. The Unicode character 0x0080 is not supported on the storage system.

Clearing a character mapping from a volume

You can use the charmap command to clear a character mapping from a volume when you no longer need it. This is useful for example when you remove an application that uses the character mapping from the storage system.

Step

1. To clear a character mapping, enter the following command:

```
charmap volname ""
```

volname specifies the name of a volume on the storage system.

About file locking between protocols

File locking is a method used by client applications to prevent a user from accessing a file previously opened by another user. How Data ONTAP locks files depends on the protocol of the client.

If the client is an NFS client, locks are advisory; If the client is a CIFS client, locks are mandatory.

Because of differences between the NFS and CIFS file locks, some attempts by an NFS client to access a file opened by a CIFS application fail.

The following occurs when an NFS client attempts to access a file locked by a CIFS application:

- In mixed or NTFS qtrees, file manipulation operations, such as rm, rmdir, and mv, can cause the NFS application to fail.
- NFS read and write operations are denied by CIFS deny-read and deny-write open modes, respectively.
- NFS write operations fail when the written range of the file is locked with an exclusive CIFS bytelock.

Exception: One exception to the enforcement of locks set by CIFS clients on the storage system is when the storage system runs the dump command. The dump command ignores any read access file lock set by a CIFS client. Ignoring the file lock enables the storage system to back up all files.

Note: If an attempt by an NFS client to access a file opened by a CIFS application fails, you can use the cifs terminate command to disconnect the session that has the open file that you want to access. You can determine which session has that file open using the cifs sessions * command or Server Manager. However, if you terminate a CIFS session, the client might receive errors

About read-only bits

The read-only bit is a binary digit, which holds a value of 0 or 1, that is set on a file-by-file basis to reflect whether a file is writable (disabled) or read-only (enabled).

CIFS clients that use MS-DOS and Windows can set a per-file read-only bit. NFS clients do not set a per-file read-only bit, because NFS clients do not have any protocol operations that use a per-file read-only bit.

Data ONTAP can set a read-only bit on a file when a CIFS client that uses MS-DOS or Windows creates that file. Data ONTAP can also set a read-only bit when a file is shared between NFS clients and CIFS clients. Some software, when used by NFS clients and CIFS clients, requires the read-only bit to be enabled.

For Data ONTAP to keep the appropriate read and write permissions on a file shared between NFS clients and CIFS clients, it treats the read-only bit according to the following rules:

- NFS treats any file with the read-only bit enabled as if it has no write permission bits enabled.
- If an NFS client disables all write permission bits and at least one of those bits had previously been enabled, Data ONTAP enables the read-only bit for that file.
- If an NFS client enables any write permission bit, Data ONTAP disables the read-only bit for that file.
- If the read-only bit for a file is enabled and an NFS client attempts to discover permissions for the file, the permission bits for the file are not sent to the NFS client; instead, Data ONTAP sends the permission bits to the NFS client with the write permission bits masked.
- If the read-only bit for a file is enabled and a CIFS client disables the read-only bit, Data ONTAP enables the owner's write permission bit for the file.
- Files with the read-only bit enabled are writable only by root.

Note: Changes to file permissions take effect immediately on CIFS clients, but might not take effect immediately on NFS clients if the NFS client enables attribute caching.

Deleting files with the read-only bit set

You can set the cifs.perm_check_ro_del_ok to allow deletion of files using UNIX delete semantics when the read-only bit is enabled. By default, this behavior is disabled.

About this task

Windows does not allow you to delete a file with the read-only bit enabled. Some multiprotocol source control applications require UNIX delete semantics; files for these applications also cannot be deleted when the read-only bit is enabled.

Step

1. To allow deletion of files using UNIX delete semantics when the read-only bit is enabled, enter the following command:

```
options cifs.perm_check_ro_del_ok on
```

Managing UNIX credentials for CIFS clients

When connecting to your storage system, a user on a CIFS client receives a CIFS credential. The user must also have one or more UNIX credentials to access resources controlled by Data ONTAP.

Next topics

How CIFS users obtain UNIX credentials on page 232
Ensuring that only intended CIFS users receive UNIX credentials on page 233

How CIFS users obtain UNIX credentials

A UNIX credential consists of a UNIX-style user ID (UID) and group IDs (GIDs).

Data ONTAP uses the UNIX credential for the following purposes:

- When a user tries to access files that have UNIX-style security, Data ONTAP uses the UID and GID to determine the access rights of the user.
- When you want to use group quotas on a group that contains CIFS users, those CIFS users must have UNIX credentials. For more information about group quotas, see the Storage Management Guide.

When a CIFS user tries to connect to the storage system, Data ONTAP tries to determine the UID and primary GID of the CIFS user. If Data ONTAP cannot determine the UID of the CIFS user, the user is denied access

Data ONTAP obtains UNIX credentials by looking up the UNIX password database, which can be an NIS map or the /etc/passwd file, to obtain the UID for a user. The database contains accounts for all users that might access the storage system. Each account contains a UNIX-style user name and UID.

For Data ONTAP to obtain a UID for a CIFS user, it must first determine the user's UNIX-style name. Data ONTAP does not require that a user's Windows name be identical to the UNIX name. By entering information in the /etc/usermap.cfg file, you can specify how each Windows name maps to a UNIX name. If you accept the default mapping, you do not need to enter this information. By default, Data ONTAP uses the Windows name as the UNIX name when it looks up the UID. (The storage system converts uppercase characters in the Windows name to lowercase before the lookup.)

If the user names in the UNIX password database are identical to the Windows names, you need not provide the mapping information in the /etc/usermap.cfg file. If the user name is not found in the UNIX password database and the wafl default unix user option has been specified, the default login name specified for that option is used. See the options(1) man page for more information about setting the wafl.default_unix_user option.

Data ONTAP obtains a user's GIDs in the following ways:

- Data ONTAP obtains the user's primary GID from the UNIX password database. Each account in the UNIX password database contains the primary GID for that user.
- Data ONTAP obtains the user's other GIDs from the group database, which can be the NIS group map or the /etc/group file. The group database is where you define membership for various groups.

You can see the UNIX credential of a connected CIFS user when you display CIFS session information

Ensuring that only intended CIFS users receive UNIX credentials

You can configure which CIFS users receive UNIX credentials by editing the /etc/usermap.cfg file, creating UNIX groups and users, and enabling the Windows guest user account.

Steps

- 1. If some Windows names are different from UNIX names or you want to prevent some CIFS users from accessing the storage system, edit the /etc/usermap.cfg file.
- **2.** Create groups in the UNIX group database.
- 3. For each CIFS user with a mapped UNIX name, enter the user account in the UNIX password database.
- **4.** If you rename the Administrator account, make sure at least one CIFS user maps to the UNIX root account
- 5. If you want CIFS users who do not have an entry in the UNIX password database to access the storage system, create a default user account in the UNIX password database and set the wafl.default_unix_user option to that user.
- **6.** If you want unauthenticated users to access the storage system, enable the Windows guest user account.

Next topics

Specifying entries in the /etc/usermap.cfg file on page 233

Mapping a Windows account to root on page 239

Mapping UNIX names to UIDs and GIDs on page 240

Enabling or disabling the default UNIX user account on page 241

Enabling or disabling the Windows guest user account on page 242

Specifying entries in the /etc/usermap.cfg file

Data ONTAP uses the /etc/usermap.cfg file to map user names. In its simplest form, each /etc/usermap.cfg entry contains a pair of names: the Windows name and the UNIX name. Data ONTAP can translate the Windows name to the UNIX name or vice versa.

When CIFS is started, if the /etc/usermap.cfg file is missing, a default file is created. It contains commented-out sample map entries that are useful for improving security.

When Data ONTAP receives a connection request from a CIFS user, it searches the /etc/usermap.cfg file to see whether an entry matches the user's Windows domain name and user name.

If an entry is found, Data ONTAP uses the UNIX name specified in the entry to look up the UID and GID from the UNIX password database. If the UNIX name is a null string, Data ONTAP denies access to the CIFS user.

If an entry is not found, Data ONTAP converts the Windows name to lowercase and considers the UNIX name to be the same as the Windows name. Data ONTAP uses this UNIX name to look up the UID and GID from the UNIX password database.

Data ONTAP scans the file sequentially. It uses the first matching entry for mapping.

For information about character coding of the /etc/usermap.cfg file, see the information about the contents of the /etc directory in the Storage Management Guide.

Step

1. Specify each entry using the following format:

```
[IP_qualifier:] Windows_name [direction] [IP_qualifier:] UNIX_name
```

You can embed comments in the file by beginning the comment lines with #. Comments at the end of an entry are also allowed if preceded by #. Blank lines are ignored.

Next topics

About the IP qualifier field on page 234

About the Windows name field on page 235

About the Direction field on page 235

About the UNIX_name field on page 236

How Data ONTAP interprets domain names in /etc/usermap.cfg on page 236

Examples of usermap.cfg entries on page 237

Guidelines for mapping user names on page 238

Recommended entries for increased security on page 239

Verifying NFS clients on page 239

About the IP_qualifier field

The IP qualifier field is an IP address that qualifies the user name by narrowing the match.

The IP qualifier can be any of the following:

- An IP address in bit notation. You can specify a subnet by including the number of bits in the subnet mask. For example, 192.4.1.0/24 means the 192.4.1.0 class C subnet.
- A name. Data ONTAP first considers a name to be a host name. If it cannot find a matching host name in its host name database, it considers the name to be a network name.
- A subnet address that includes a network name or IP address and the subnet mask (for example, corpnet/255.255.255.0).

Note: Data ONTAP uses the IP qualifier only for matching. If an IP qualifier is present on the destination side of a map entry, Data ONTAP does not consider the login request to come from that IP qualifier.

About the Windows name field

The Windows name field consists of a Windows domain name, which is optional, and a Windows user name.

On the source side of the map entry, the domain specifies the domain in which the user resides. On the destination side of the map entry, it specifies the domain used for the mapped UNIX entry. If the account name in the entry is a local user account, the Windows domain name is the storage system name.

If you omit the domain name in the Windows name field, it is assumed to be the domain in which the storage system is installed. If the storage system uses local user accounts for authentication, the domain name is the storage system name.

You can use an asterisk (*) as a wildcard character in the following ways:

- You can use it on the source side to indicate that the specified name in any domain maps to the specified UNIX name.
- You can use it on the destination side to indicate that the specified UNIX name maps to a Windows name in any trusted domain. The trusted domain used for the mapping depends on where Data ONTAP finds the first matching Windows name. Data ONTAP searches only the trusted domains you specify with the cifs.search domains option, in the order in which the trusted domains are specified. If you do not set this option, Data ONTAP searches all trusted domains in an unspecified order.

If the user name contains spaces or a pound sign, enclose the name in double quotation marks, for example, "bob smith" or "eng#lab"\"#joe".

Note: Do not enclose the \ in quotation marks.

You can use an asterisk (*) in the Windows name. For more information about how to use the asterisk, see "Guidelines for wildcard character in user name" on page 254.

If the user name is empty or blank (specified as "") on the destination side of the map entry, the matching UNIX name is denied access. Use entries with a blank user name to deny access to some or all UNIX users. If you use these entries in conjunction with IP qualifier, you can exclude all UNIX users except for certain hosts or subnets.

About the Direction field

The direction field indicates the direction of the mapping.

The direction field can be one of the values in the following table.

Value of the direction field	Meaning
==	Mapping is bidirectional. The entry maps from Windows to UNIX and from UNIX to Windows.
	Omitting the direction field has the same meaning as specifying ==.

Value of the direction field	Meaning
<=	The entry maps from UNIX to Windows
=>	The entry maps from Windows to UNIX.

About the UNIX name field

The UNIX name field is a UNIX name in the UNIX password database.

If the UNIX_name field is empty or blank (specified as "") on the destination side of the map entry, the specified source name is prevented from logging in. The Windows user cannot log in to the storage system even if the user can see the storage system while browsing the network.

You can use an asterisk (*) in the UNIX name. The asterisk is considered the wildcard character. It means any user. Remember these guidelines when including an asterisk in the Windows name or the UNIX name:

- If the asterisk is on the source side of the mapping, any user maps to the specified name on the
 destination side.
- If the destination side contains an asterisk but the source side does not, no mapping is done. Data ONTAP does not map an explicitly specified name to a name with an asterisk.
- If both the source and destination sides contain an asterisk, the corresponding name is mapped.

How Data ONTAP interprets domain names in /etc/usermap.cfg

The way in which Data ONTAP interprets a domain name in the /etc/usermap.cfg file that contains a dot depends on whether storage system is in a Windows NT domain or a Windows Active Directory domain.

If your storage system is installed in a Windows NT domain, the length of the domain name field affects how the domain name is interpreted.

If your storage system is installed in a Windows Active Directory domain, Data ONTAP interprets the domain names in the same way a Windows server would.

If the storage system is in a Windows NT domain, Data ONTAP follows these rules when interpreting a domain name containing a dot in the <code>domain/user</code> format:

• If domain is 15 characters or shorter, Data ONTAP recognizes the entire string, including the dot, as the NetBIOS form of the domain name. For example, my_company.com is the NetBIOS form of the domain name in the following name:

my_company.com\john_smith

• If domain is longer than 15 characters, the dot is treated as a separator, and the string before the first dot is the NetBIOS form of the domain name. For example, engineering is the NetBIOS form of the domain name in the following name:

engineering.1234567890corporation.com\john_smith

If the storage system is in a Windows Active Directory domain, you can specify a user name in the domain\user format. The string before the first dot in domain is the NetBIOS form of the domain name, and the entire string in domain is the DNS domain name.

For example, engineering is the NetBIOS form of the domain name and engineering. 1234567890corporation.com is the DNS domain name in the following name:

engineering.1234567890corporation.com\john_smith

Examples of usermap.cfg entries

Here are some examples of usermap.cfg entries.

The following table describes some simple /etc/usermap.cfg entries.

Entry	Meaning
"Bob Garj" == bobg	The Windows name Bob Garj maps to the UNIX name bobg and vice versa.
mktg\Roy => nobody	The Windows name Roy in the mktg domain maps to the UNIX name nobody. This entry enables Roy to log in with limited access to files with UNIX-style security.
engr\Tom => ""	Disallow login by the user named Tom in the engr domain.

The following table provides some examples with asterisks in the Windows names.

Entry	Meaning
uguest <= *	All UNIX names not yet matched map to Windows user uguest.
*\root => ""	Disallow logins using the Windows name root from all domains.
corporate* == pcuser	Any user in the corporate domain maps to the UNIX name pcuser. No mapping is done for the UNIX name pcuser because an asterisk is used in the Windows user name.
Engineer == *	Any UNIX name maps to the Windows name Engineer in the storage system's domain. No mapping is done for the Windows name Engineer because an asterisk is used in the UNIX user name.

Entry	Meaning
Either of the following entries: • homeusers* * • homeusers* == *	All UNIX users map to the corresponding names in the homeusers domain. For example, a UNIX user named bob maps to homeusers\bob. All Windows users from the homeusers domain map to their corresponding UNIX names. For example, a Windows user named john in the homeusers domain maps to the UNIX name john.

The following table provides some examples with IP qualifiers.

Entry	Meaning
<pre>Engineering* <= sunbox2:*</pre>	UNIX names from the host named sunbox2 map to the same names in the Engineering domain.
Engineering* <= 192.9.200.70:*	UNIX names from the IP address 192.9.200.70 map to the same names in the Engineering domain.
""<= 192.9.200.0/24:*	All NFS requests from the 192.9.200.0 subnet are denied because UNIX names from this subnet map to a null string.
192.9.200.0/24:test-dom* => ""	All users in the test-dom domain are denied access from the 192.9.200.0 subnet.
** == corpnet/255.255.0.0:*	All user names from all domains map to the corresponding UNIX names. If user names are not unique across domains, this entry might cause different Windows names to map to the same UNIX name.
	Because IP qualifiers are only for matching, specifying corpnet/255.255.0.0: does not affect the result of Windows to UNIX mapping.
	Because the mapping is bidirectional, all UNIX names from the corpnet/255.255.0.0 network map to the same names in one of the storage system's trusted domains.

Guidelines for mapping user names

You should follow some guidelines to keep entries simple and easy to understand.

Keep the following guidelines in mind when performing mapping:

- · Keep Windows user names and UNIX user names the same whenever possible. If the names are identical, you do not need to create map entries in the /etc/usermap.cfg file.
- Avoid creating confusing map entries such as these:

```
"tome s" => tjs
bill <= tjs
```

Avoid using IP qualifiers to map users differently. For example, it is confusing if you map UNIX
user tjs from UHOST1 to Windows user "Tom S" but UNIX user tjs from UHOST2 to Windows
user Smith. Use IP qualifiers only to restrict access.

Recommended entries for increased security

You should add several entries to the /etc/usermap.cfg file to prevent unauthorized users from accessing the storage system.

Remember that the order of entries is important when you copy these recommended entries to your file, because Data ONTAP uses the first matching entry to determine the mapping.

Map entry	Meaning
*\root => nobody	Any Windows users named root can log in, but they do not have UNIX permissions. For any instances of a Windows user named root that should map differently, you explicitly add a map entry earlier in the /etc/usermap.cfg file.
<pre>guest <= administrator guest <= root</pre>	The first entry prevents spoofing the Windows Administrator account from UNIX (if the Administrator account has not been renamed). The second entry maps the UNIX user root to the Windows guest account. Type the second entry near the end of the /etc/usermap.cfg file after any explicit map entries for root-privileged UNIX hosts or subnets.
** => "" "" <= *	These entries, placed at the end of the file, prevent any other mapping from occurring. They defeat the default behavior that if an entry is not matched, the same name is tried.

Verifying NFS clients

For multiprotocol storage systems, you can restrict NFS access to allow only clients that have been mapped in the /etc/usermap.cfg file.

This security restriction is probably most appropriate for non-Kerberos environments that primarily serve CIFS clients but want to allow connections from certain known (IP-mapped) NFS clients. See the options(1) man page for more information about the nfs.require_valid_mapped_uid option.

Mapping a Windows account to root

If you have only CIFS clients in your environment and your storage system was set up as a multiprotocol storage system, you must have at least one Windows account that has root privilege for

accessing files on the storage system; otherwise, you cannot manage the storage system because you do not have access to files with UNIX-style security, which might include some configuration files in the /etc directory.

If your storage system was set up as NTFS-only, however, the /etc directory has a file-level ACL that enables the Administrators group to access the Data ONTAP configuration files.

Step

1. Perform one of the following actions.

If you want to map accounts in the following group to root	Then
Administrators	Verify that the wafl.nt_admin_priv_map_to_root option is set to on.
	Result: All accounts in the Administrators group are considered root, even if you do not have an /etc/usermap.cfg entry mapping the accounts to root. If you create a file using an account that belongs to the Administrators group, the file is owned by root when you view the file from a UNIX client.
Selected accounts	For each account that maps to root, add an /etc/usermap.cfg entry.
	Note: It is important to have at least one Windows account that maps to root on a multiprotocol storage system. Otherwise, no accounts can access the configuration files in the /etc directory.
	Then disable the wafl.nt_admin_priv_map_to_root option by entering the following command:
	options wafl.nt_admin_priv_map_to_root off
	Result: Accounts in the Administrators group no longer map to root. You can use only those accounts that you map to root in the /etc/usermap.cfg file to access files with UNIX-style security. Each account in the Administrators group has a separate UNIX ID.

Mapping UNIX names to UIDs and GIDs

For a CIFS user to have a UID and GIDs, you must create a UNIX account in the UNIX password database that corresponds to the user's UNIX name.

For each UNIX name, Data ONTAP obtains the UID and the primary GID from the UNIX password database. Data ONTAP obtains secondary GIDs for the UNIX name from the UNIX group database. A CIFS user whose UNIX name does not exist in the password database can still obtain a UID if you enable the default UNIX user account.

If your storage system is an NIS client before you run cifs setup, Data ONTAP does not automatically create the /etc/passwd file. If NIS is not enabled when you run cifs setup, Data ONTAP automatically creates the /etc/passwd file.

If the NIS server fails and the storage system does not have the /etc/passwd file, CIFS users cannot connect to the storage system. You can create the /etc/passwd file to ensure that the storage system can obtain UNIX credentials for CIFS users even when NIS is unavailable.

The default /etc/passwd file contains entries for these UNIX names:

- root
- pcuser
- nobody

For information about the format of the /etc/group and /etc/passwd files, see the Storage Management Guide

Step

1. Perform one of the following actions.

If you use	Then
NIS but not the /etc/ passwd file	Add the UNIX name of each CIFS user to the NIS password map.
The /etc/passwd file but not NIS	Add an entry in the /etc/passwd file for the UNIX name of each user. Because Data ONTAP does not support a command for creating a password entry, use a UNIX host that supports the passwd command to create the /etc/passwd file on the host. Then copy the file from the host to the storage system.

Enabling or disabling the default UNIX user account

You should create a default UNIX user account if there are users who need to connect to the storage system occasionally but do not need to have individual entries in the UNIX password database. These users can use the default user account to connect to the storage system.

The default UNIX name of the default user is pcuser. You can specify another name through the wafl.default_unix_user option. If this option is set to a null string, no one can access the storage system as a UNIX default user. That is, each user must have an account in the password database before they can access the storage system.

For a user to connect to the storage system using the default user account, the user must meet the following prerequisites:

- The user is authenticated.
- The user is in a trusted domain.
- The user name does not map to a null string in the /etc/usermap.cfg file.

If quotas are enabled, the default user account is subject to quota restrictions in the same way as other users. For example, if the default user name is pcuser and a default user quota applies to the /vol/ vol0 volume, pcuser is restricted by this default user quota. For more information about quotas for

the default user, see the section about how disk space owned by default users is counted in the chapter about disk space management using quotas in the *Data ONTAP Storage Management Guide*.

Step

1. Perform one of the following actions.

If you want to	Then
Disable the default UNIX user account	Enter the following command:
	options wafl.default_unix_user "" Result: Only users with accounts in the password database can access the storage system.
Enable the default UNIX user account	Create an entry either in the NIS password database or the /etc/passwd file for the pcuser account.
Change the name of the default UNIX user account from pcuser to another name	Set the wafl.default_unix_user option to the new name for the default UNIX user account
	For example, enter the following command to change the default user name to someuser:
	options wafl.default_unix_user someuser

Enabling or disabling the Windows guest user account

The effect of enabling the Windows guest user account depends on how your storage system authenticates users.

Here are the possibilities:

- If the storage system uses the domain controller or local user accounts to authenticate users, enabling the Windows guest user account means that users who log in from untrusted domains can connect to the storage system. These users use the UNIX UID that you create specifically for the Guest account. A user logged in as Guest does not have a home directory.
- If the storage system uses the UNIX password database to authenticate users, enabling the Windows guest user account has the same effect as enabling the default UNIX account, except that the user logged in as Guest does not have a home directory.

Step

1. Perform one of the following actions.

If you want to	Then
Disable the Windows	Enter the following command:
guest user account	options cifs.guest_account ""

If you want to	Then
Enable the Windows guest user account	Create a user account in the NIS password database or the /etc/passwd file to be used by the guest account. Then enter the following command to specify the guest user account name used in the UNIX password database:
	options cifs.guest_account unix_name
	unix_name is the name of the user account in the UNIX password database.

Managing the SID-to-name map cache

CIFS frequently is required to map security identifiers (SIDs) to user and group names and vice versa for user authentication, quota management, console command processing, and various RPC responses. The SID-to-name map cache contains entries that map SIDs to pre-Windows 2000 user and group names.

About this task

The storage system obtains the SID-to-name mapping information by querying the domain controller. To minimize multiple lookups of the same names, SID-to-name information received from the domain controller is saved in the SID-to-name map cache on the storage system.

The SID-to-name map cache is enabled on the storage system by default. You can manually control the cache by changing the lifetime of the entries, clearing entries, or turning SID-to-name map caching off or on. The cache persists if CIFS is terminated or restarted, but it does not persist across a reboot or a takeover and giveback.

When the storage system requires SID-to-name mapping information, it first looks for a matching entry in the SID-to-name map cache. If a matching entry is not found or if an expired matching entry is found, the storage system queries the appropriate domain controller for current mapping information. If the domain controller is not available, an expired mapping entry might be used by the storage system.

Here are the main benefits of using the SID-to-name map cache for name lookup:

- Increased performance for authorization
- Faster user response for console commands that perform mapping operations

Next topics

Enabling or disabling the SID-to-name map cache on page 244
Changing the lifetime of SID-to-name mapping entries on page 244
Clearing all or part of the SID-to-name map cache on page 244

Enabling or disabling the SID-to-name map cache

You can enable or disable the SID-to-name map cache by setting the cifs.sidcache.enable option to on or off, respectively.

Step

1. Perform one of the following actions.

If you want the SID-to-name map cache	Then
Enabled	Enter the following command:
	options cifs.sidcache.enable on
Disabled	Enter the following command:
	options cifs.sidcache.enable off

Changing the lifetime of SID-to-name mapping entries

You can change the lifetime of SID-to-name mapping entries by setting the cifs.sidcache.lifetime option.

Step

1. Enter the following command:

```
options cifs.sidcache.lifetime time
```

time is the number of minutes that new mapping entries are used before they expire.

Clearing all or part of the SID-to-name map cache

Periodically, expired entries that are more than one week old are automatically cleared from the SIDto-name map cache; however, you might want to manually clear entries in the SID-to-name map cache when users change their accounts or user names. Alternatively, you might want to manually clear all SID-to-name map cache entries to prevent the storage system from using an expired entry when the domain controller is not available.

Step

1. Perform one of the following actions.

Using LDAP services

Data ONTAP supports LDAP for user authentication, file access authorization, user lookup and mapping services between NFS and CIFS, and LDAP over the Secure Sockets Layer (SSL).

About this task

An LDAP server enables you to centrally maintain user information. As a result, you do not have to maintain separate configuration files for each storage system that is on your network. If you have several storage systems on your network, maintaining user information centrally saves you from updating these files on each storage system every time you add or delete a user or a group.

If you store your user database on an LDAP server, you can configure your storage system to look up user information in the LDAP database. For example, on your LDAP server, you can store logins and

passwords for administrative users of the console and the rsh, telnet, http, https, and ssh protocols, making it possible for you to centrally manage them.

Data ONTAP LDAP support includes the following types of LDAP servers:

- Netscape
- iPlanet
- OpenLDAP
- · Windows Active Directory
- Novell NDS

Data ONTAP supports connections to LDAP servers that require signing. LDAP signing support is enabled by default.

Next topics

Configuring LDAP services on page 246

Managing client authentication and authorization on page 253

Managing LDAP user-mapping services on page 254

Specifying base and scope values for user-mapping on page 255

Managing Active Directory LDAP servers on page 255

Managing LDAP schema on page 258

Configuring LDAP services

This section provides information to help you configure Data ONTAP to connect to your LDAP database.

Next topics

Specifying the general search base and scope on page 247

Overriding general base and scope values for user password, group, and netgroup lookups on page 247

Specifying LDAP servers on page 248

Specifying preferred LDAP servers on page 248

Enabling or disabling LDAP on page 249

Enabling or disabling SSL for LDAP traffic on page 249

Installing a root certificate for SSL for LDAP traffic on page 250

Adding the Idap entry to the /etc/nsswitch.conf file on page 250

Specifying the administrative user name on page 251

Specifying the administrative password on page 251

Enabling the centralized administration of administrative users on page 251

Specifying the LDAP port on page 252

LDAP server option precedence on page 252

Specifying the general search base and scope

The LDAP base is the distinguished name of the LDAP tree in which user information is stored. All lookup requests sent to the LDAP server will be limited to the search base and scope specified by the ldap.base option value, unless further restricted by a more specific base and scope lookup value, such as ldap.base.passwd, ldap.base.group, or ldap.base.netgroup.

Step

1. Enter the following command:

```
options ldap.base name
```

name specifies the base distinguished name. Use quotes around names with embedded spaces.

Example

options ldap.base "o=examplecompany,c=us"

Overriding general base and scope values for user password, group, and netgroup lookups

Although it is not required, you can specify base and scope values for user password, group, and netgroup lookups, to limit such lookup queries to a specific branch of your LDAP database. Limiting the search base and scope of these queries can significantly improve performance.

Steps

1. Set the base and scope search values for user password lookups, as they are defined in your LDAP database, by specifying a value for the ldap.base.passwd option. For example:

```
options ldap.base.passwd "ou=People,dc=companydomain,dc=com"
```

2. Set the ldap.base.group base and scope search values for group lookups, as they are defined in your LDAP database. For example:

```
options ldap.base.group "ou=Groups,dc=companydomain,dc=com"
```

3. Set the ldap.base.group base and scope search values for netgroup lookups, as they are defined in your LDAP database. For example:

```
options ldap.base.group "ou=Netgroups,dc=companydomain,dc=com"
```

After you specify the search base and scope values for the ldap.base.passwd, ldap.base.group, and ldap.base.netgroup options, these values take precedence over the search base and scope set for ldap.base, for user password, group, and netgroup lookups, respectively.

Specifying LDAP servers

You can specify the LDAP servers to be used for LDAP queries by setting the ldap.servers option.

Step

1. Enter the following command:

```
options ldap.servers "name[ name...]"
```

name is the name of an LDAP server. You can enter multiple server names using a spaceseparated list enclosed in quotes. Data ONTAP attempts to establish connections in the order in which you specify these servers.

Note: A Windows LDAP server uses simple authentication instead of SASL unless the following conditions are met: you specify the Windows LDAP server as a name, not an IP address, and you specify the IP address and name of the Windows LDAP server in the /etc/hosts file. For information about editing the /etc/hosts file, see the Data ONTAP 7-Mode System Administration Guide.

Example

options ldap.servers "server1 server2"

Specifying preferred LDAP servers

You can set the ldap.servers.preferred to specify preferred LDAP servers. This allows you to improve performance by directing to specific LDAP servers that are on faster links.

Step

1. Enter the following command:

```
options ldap.servers.preferred "name [ name...]"
```

name specifies the name of a preferred LDAP server. You can enter multiple server names using a space-separated list enclosed in quotes.

Example

options ldap.servers.preferred "server1 server2"

Enabling or disabling LDAP

You can enable or disable LDAP by setting the ldap.enable option to on or off, respectively.

Step

1. Perform one of the following actions.

If you want to	Then	
Enable LDAP	Enter the following command:	
	options ldap.enable on	
Disable LDAP	Enter the following command:	
	options ldap.enable off	

Enabling or disabling SSL for LDAP traffic

You can enable or disable secure sockets layer (SSL) encrypting of LDAP traffic by setting the ldap.ssl.enable option to on or off, respectively.

In addition to enabling SSL for LDAP, you must have a root authority-signed certificate installed on your storage system.

Note: The same certificate-signing authority must issue both the certificate on the storage system and the certificate on the server.

Step

1. Perform one of the following actions:

If you want SSL for LDAP	Then
Enabled	Enter the following command:
	options ldap.ssl.enable on
Disabled	Enter the following command:
	options ldap.ssl.enable off

Installing a root certificate for SSL for LDAP traffic

You can install a root certificate for use for Secure Sockets Layer (SSL) encrypting of LDAP traffic on your storage system by using the keymgr command.

Steps

- 1. Download a certificate from your preferred trusted signing authority to the storage system. Remember the certificate's location on the storage system.
- **2.** Enter the following command:

```
keymgr install root certificate_filename
```

certificate_filename is the complete file name for the certificate. After the keymgr command installs the certificate, you can remove the copy you placed on the storage system.

Example

```
keymgr install root /etc/my_cert
```

Note: The same certificate-signing authority must issue both the certificate on the storage system and the certificate on the server.

3. Set the LDAP port to port 636.

Adding the Idap entry to the /etc/nsswitch.conf file

You can add the ldap entry to the /etc/nsswitch.conf file to enable LDAP for UNIX client authentication.

Steps

- 1. Open the /etc/nsswitch.conf file on the storage system for editing.
- **2.** Enter the following at the password, group, and netgroup lines:

ldap

You can optionally add files and/or nis to the password line, but they must be entered after ldap if you want to use LDAP as the primary mechanism to retrieve user information.

Example

```
passwd: ldap files nis
```

3. Save the file.

Specifying the administrative user name

If anonymous authentication does not work in your environment, you need to specify an administrative user name to be used for administrative queries for looking up UIDs and GIDs.

Step

1. Enter the following command:

```
options ldap.name name
```

name is the LDAP distinguished name to be used for administrative queries. You should use the name of a user with read-only access to the LDAP database. Use quotes around names with embedded spaces.

Example

options ldap.name "cn=root,o=examplecompany,c=us"

Specifying the administrative password

You can set the administrative password by setting the ldap.passwd option.

Step

1. Enter the following command:

```
options ldap.passwd password
```

password is the password for the administrative user.

The password is displayed as a series of asterisks.

Enabling the centralized administration of administrative users

You can enable the centralized administration of Data ONTAP administrative users of the console and the rsh, telnet, HTTP, and HTTPS protocols by setting the appropriate options.

Steps

1. Make sure the value of the security.admin.authentication option includes nsswitch.

For example, enter any of the following commands:

```
options security.admin.authentication nsswitch options security.admin.authentication internal,nsswitch options security.admin.authentication nsswitch,internal
```

2. Set the value of the security.admin.nsswitchgroup option to the name of a group within the confines of the nsswitch.conf file that specifies the users to whom you want to grant administrative access.

Example

If you want to grant administrative access to all of the engineers in your organization, you can create a user group called engineers, add all of the engineers in your organization to that group, and then enter the following command:

options security.admin.nsswitchgroup engineers

Specifying the LDAP port

You can set the ldap.port option to specify the port for LDAP queries. This is useful if the LDAP server has been set up to use a port other than the default for LDAP, port 389.

Step

1. Enter the following command:

options ldap.port N

N specifies the LDAP port number.

LDAP server option precedence

Data ONTAP chooses an LDAP server based on your LDAP server option settings.

Server designation option	Server selection order
ldap.preferred.servers	When specified, servers listed in this option value will be tried first, according to list order.
ldap.servers	When no ldap.preferred.servers are specified, or specified servers are not available, servers designated in this option value will be tried, according to list order.
ldap.ADdomain	When no ldap.preferred.servers and no ldap.servers are specified or available, servers designated in this option value will be tried using domain controller selection methodology.

Managing client authentication and authorization

You can enable LDAP authentication of UNIX and Windows clients; in addition, you can enable LDAP authorization of Windows client access to UNIX files and UNIX client access to NTFS or mixed files.

Next topics

Enabling LDAP-based UNIX client authentication on page 253
Enabling LDAP-based Windows client authentication on page 253
Enabling LDAP authorization for NFS file access from Windows clients on page 253
Enabling LDAP authorization for NTFS or mixed file system access from UNIX clients on page 254

Enabling LDAP-based UNIX client authentication

You can enable LDAP-based UNIX client authentication by making sure ldap is entered on the password line of the /etc/nsswitch.conf file.

Enabling LDAP-based Windows client authentication

You can authenticate Windows clients through an LDAP server by performing steps in addition to adding ldap to the passwd line of the /etc/nsswitch.conf file.

Steps

- 1. Run cifs setup on the storage system to be accessed, and specify NIS/LDAP as the authentication method to be used for CIFS clients on that storage system.
- **2.** Configure the local security settings of each Windows client to use clear text (unencrypted) password authentication rather than Kerberos or other encrypted authentication methods.
- 3. Verify that your Windows clients have their userpassword attribute configured in the LDAP user database.

Enabling LDAP authorization for NFS file access from Windows clients

You can enable authorization of Windows client access to UNIX files on a storage system that uses LDAP authentication by performing two tasks.

Steps

- 1. On the storage system to be accessed, verify that every CIFS user who needs to access UNIX files is mapped to an associated UNIX user name in the usermap.cfg file.
- 2. Verify that every associated UNIX user name has an entry in the LDAP database.

Enabling LDAP authorization for NTFS or mixed file system access from UNIX clients

You can enable authorization of UNIX client access to an NTFS or mixed file system on a storage system that uses LDAP authentication by performing several tasks.

Steps

- 1. Verify that every UNIX user that needs to access an NTFS or mixed file system has an entry in the LDAP database.
- 2. On the storage system to be accessed, verify that every UNIX user that needs to access an NTFS or mixed file system is mapped to an associated CIFS user name in the usermap.cfg file.

Managing LDAP user-mapping services

You can use LDAP services to map between UNIX and Windows user accounts, instead of using NIS data or to adding entries to the /etc/usermap.cfg file. By default, Data ONTAP uses the same (one-to-one) user account resolution process in both directions: UNIX-to-Windows mapping and Windows-to-UNIX mapping.

About this task

By default, LDAP-based user-mapping is disabled. (Data ONTAP retrieves user-mapping information from the /etc/usermap.cfg file.)

When converting to LDAP from file-based user-mapping, you must remove mapping entries (except for null session entries) from the /etc/usermap.cfg file. If mapping entries are present in that file, they will be used for user-mapping instead of LDAP records.

If you've configured Data ONTAP for null sessions, make sure you leave the null session client entry in the /etc/usermap.cfg file.

To allow Data ONTAP access to LDAP lookup services, if your UNIX user account information is stored in a non-Active Directory LDAP server, that LDAP server must be configured to allow either simple authentication or anonymous user searches.

Steps

1. From the Data ONTAP command line, specify a value for the option ldap.usermap.attribute.windowsaccount:

options ldap.usermap.attribute.windowsaccount account_name

account_name is the user object attribute Data ONTAP will use for Windows account lookups.

- 2. Extend your LDAP schema to include the user object attribute you entered in Step 1.
- **3.** From the Data ONTAP command line, specify a value for the ldap.usermap.attribute.unixaccount option:

options ldap.usermap.attribute.unixaccount account_name

account_name is the user object attribute Data ONTAP will use for UNIX account lookups.

- **4.** Extend your LDAP schema to include the values you entered in Step 2 and Step 3.
- **5.** Enter the following command:

```
options ldap.usermap.enable on
```

If you have a significant load on your LDAP server, you might want to improve performance by setting a separate search base or search base and scope for user-mapping.

Specifying base and scope values for user-mapping

LDAP options allow you to set search base and scope, to limit attribute searches to the appropriate areas of your LDAP database. Setting these options will improve the speed of LDAP lookups.

Step

1. Use the following syntax when specifying search base and scope. Base and scope values must correspond to the structure of your LDAP data:

```
options ldap.usermap.base "base[:scope][;base2[:scope2]]"
```

Examples

Entering this command sets the search base for user-mapping lookups to ou=People,dc=domain0 and the (unspecified) search scope defaults to SUBTREE:

```
options ldap.usermap.base ou=People,dc=domain0"
```

The use of parentheses applies the specified search scope (BASE) to ou=People,dc=domain0. The unspecified search scope for the o ("org") object defaults to SUBTREE.

```
options ldap.usermap.base "(ou=People,dc=domain0):BASE;o=org
```

After you finish

For more information about setting search base and scope values, see your LDAP documentation.

Managing Active Directory LDAP servers

Data ONTAP provides the ability to connect to Active Directory for LDAP lookup services.

Next topics

Using Active Directory LDAP servers on page 256
Requirements for Active Directory LDAP servers on page 256
Enabling Active Directory LDAP lookup services on page 256

Monitoring Active Directory LDAP server connections on page 257

Troubleshooting Active Directory LDAP server connections on page 257

About Active Directory LDAP server connection pooling and selection on page 258

Do not use the Idap.servers and Idap.preferred.servers options with Active Directory servers on page 258

Using Active Directory LDAP servers

You can use Active Directory for LDAP services by entering the fully qualified Active Directory domain into the Data ONTAP ldap. ADdomain option.

As Windows-to-UNIX mapping is performed using Active Directory, Data ONTAP does the following:

- Verifies that the user account exists within the Active Directory domain specified for that account
- Performs a query to the Active Directory domain specified in the ldap. ADdomain option
- Returns the UNIX user account information and verifies that the user account exists

Requirements for Active Directory LDAP servers

You need several things to use Active Directory as your LDAP server.

You need these things to use Active Directory as your LDAP server:

- · A valid CIFS license
- Your storage system joined to an Active Directory domain
- A two-way trust relationship established between your storage system's domain and your LDAP server's domain, if they are different

Enabling Active Directory LDAP lookup services

You can enable Active Directory for LDAP lookup services by performing several tasks.

Steps

1. If your UNIX user account information is not in Active Directory, or if it is not in an LDAP server that is configured to allow anonymous user searches, enter the user name and password to be used for LDAP lookups into the ldap.name and ldap.passwd options, respectively.

```
options ldap.name user_name
options ldap.passwd password
```

- 2. In the /etc/nsswitch.conf file, specify ldap for the passwd entry, the group entry, or both, to designate LDAP as the lookup service to use.
- **3.** If you have a custom schema, enter values for NSSMAP options.
- **4.** From the Data ONTAP command line, enter the following command:

options ldap.ADdomain fully_qualified_domain_name

Example

options ldap.ADdomain group.company.com

Note: The domain you enter must either be the local domain or a domain that shares a trust relationship with the local domain.

Monitoring Active Directory LDAP server connections

To monitor Active Directory LDAP server connection, you can display Active Directory LDAP server information and connection status for all LDAP server types.

Step

1. Perform one of the following actions.

If you want to	Then
Display Active Directory LDAP server information	Enter the following command:
	cifs domaininfo
	Result: Following the list of domain controller connections and domain controller selection preferences, a list of Active Directory LDAP server connections is displayed, followed by the list of LDAP server selection preferences.
Display connection status for all LDAP server types	Enter the following command:
	netstat
	Result: Both Active Directory and non-Active Directory LDAP server connection state information is shown on port 389 (or the non-default value assigned using the ldap.port option).

Troubleshooting Active Directory LDAP server connections

You can instruct Data ONTAP to log all domain controller address discovery and connection activities by setting the cifs.trace_dc_connection option to on.

Step

1. Enter the following command:

```
options cifs.trace_dc_connection on
```

Data ONTAP logs all domain controller address discovery and connection activities to the system log.

About Active Directory LDAP server connection pooling and selection

Data ONTAP performs several operations to improve LDAP performance.

These operations include the following operations:

- Active Directory LDAP server connections are pooled on a per-domain basis.
- When no response is received from the current LDAP server, subsequent connections are made to the next best available LDAP server.
- Once every minute, Data ONTAP performs a check to see whether a better LDAP server has become available.
- Every four hours, Data ONTAP discovers the available Active Directory LDAP servers and reorders the list, sorting servers in the following order:
- Preferred servers, left in the order specified by the prefdc command.
- Favored servers, sorted by fastest response time
- Other Active Directory LDAP servers, sorted by fastest response time

Do not use the Idap.servers and Idap.preferred.servers options with Active Directory servers

Data ONTAP connects to servers specified by ldap.servers and ldap.preferred.servers options and attempts to authenticate using a simple bind. Because simple binds do not provide sufficient authentication to establish a connection with Active Directory servers, do not specify Active Directory servers within these two option values.

Managing LDAP schema

By default, Data ONTAP supports LDAP servers that comply with RFC 2307, which specifies a Network Information Service (NIS)-style schema. You can replace the default values of LDAP options with your custom attribute names to configure Data ONTAP to query your custom (not RFC 2307-compliant) schema.

About this task

Your RFC 2307-compliant schema must be extended on the LDAP servers that you want to use for LDAP queries.

For more information refer to RFC 2307 or to documentation by third-party directory integration vendors.

Next topics

About the default schema on page 259

Modifying the custom schema options to match your LDAP schema on page 259

About the default schema

By default, the Data ONTAP's schema variables are set to the appropriate RFC 2307 values.

Option	Default value (per RFC 2307)
ldap.nssmap.objectClass.posixAccount	posixAccount
ldap.nssmap.objectClass.posixGroup	posixGroup
ldap.nssmap.attribute.groupname	cn
ldap.nssmap.attribute.netgroupname	cn
ldap.nssmap.attribute.nisNetGroupTri ple	nisNetGroupTriple
ldap.nssmap.attribute.memberUid	memberUid
ldap.nssmap.attribute.uid	uid
ldap.nssmap.attribute.uidNumber	uidNumber
ldap.nssmap.attribute.gidNumber	gidNumber
ldap.nssmap.attribute.userPassword	userPassword
ldap.nssmap.attribute.homeDirectory	homeDirectory
ldap.nssmap.attribute.loginShell	loginShell
ldap.nssmap.attribute.gecos	gecos

Modifying the custom schema options to match your LDAP schema

You can change Data ONTAP's schema to match your LDAP schema by changing the appropriate ldap.nssmap.* options.

Step

1. Enter the following command:

 $\verb"options" ldap.nssmap.attribute.gidNumber" object$

object specifies the object that contains Group ID (GID) numbers. The default is gidNumber.

Examples

For a custom LDAP schema in which the object containing GID numbers is "groupid," you would enter the following command:

options ldap.nssmap.attribute.gidNumber groupid

Enabling Storage-Level Access Guard using the fsecurity command

Beginning in Data ONTAP 7.2.2, storage administrators can set security (permissions and auditing) on volumes and atrees using the fsecurity command. This feature is called Storage-Level Access Guard.

About this task

With the Storage-Level Access Guard security in place, any storage object can contain up to three types of security layers:

- NTFS/UNIX/NFSv4 security. Exists on the directory or file that represents the storage object. This security is also the same security you can set from a client.
- Storage-Level Access Guard file security. Applies to every file within the storage object. Applying this security will not affect access to, or auditing of, directories.
- · Storage-Level Access Guard directory security. Applies to every directory within the storage object. Applying this security will not affect access to, or auditing of, files.

Note: At this time, only NTFS access permissions are supported for Storage-Level Access Guard. For a UNIX user to perform a security check on qtrees or volumes where Storage-Level Access Guard has been applied, the UNIX user must be mapped to a Windows user.

Storage-Level Access Guard security applies to files and directories but is not inherited by them. If you view the security settings on a file or directory, you will not see the Storage-Level Access Guard security.

However, access to a file or directory in Data ONTAP is determined by the combined effect of both the native permissions applied to files and/or directories and the Storage-Level Access Guard permissions set on gtrees and/or volumes. Both levels of security are evaluated to determine what the effective permissions a file or directory has.

Next topics

About the fsecurity command on page 260

Generating and editing the job definition file on page 261

Specifying job definition file elements on page 262

Creating a security job and applying it to the storage object on page 263

Checking the status of or canceling a security job on page 264

Displaying the security settings on files and directories on page 264

Removing the Storage-Level Access Guard on page 265

About the fsecurity command

Using the fsecurity command, storage administrators can apply security over large directories without experiencing significant performance degradation, because security settings are being

managed locally on the storage system, not from remote clients. In addition, storage administrators can set security on many files and directories at once using the same command.

Note: For a list of all fsecurity commands, enter fsecurity help at the storage system command line or refer to the fsecurity(1) man page.

Generating and editing the job definition file

You can generate a job definition file to apply Storage-Level Access Guard security to a qtree or volume, or to set bulk permissions on files and directories.

About this task

The job definition file is a Unicode text file that contains information such as security descriptors and paths that define discretionary access control lists (DACLs) and system access control lists (SACLs).

This information is encoded using the Security Descriptor Definition Language (SDDL).

Once the file is created or edited and copied to the storage system, the fsecurity apply command is used to validate and apply the file's security definitions. Running the command on the file creates a job that runs in the background on the storage system. Once the job is complete, you can view the results from the storage system console.

There are no requirements for the name and storage system location of the job definition file. In these examples, the following name and location are used:

/vol/vol0/templates/security-base.sec

The job definition file format must be ASCII or Unicode (UCS-2).

There are two ways to create and update the job definition file:

- Using the secedit utility (available from the NOW site)
- Using a text editor

Next topics

Managing the job definition file with the secedit utility on page 261

Managing the job definition file with a text editor on page 262

Managing the job definition file with the secedit utility

You can generate the job definition file using the secedit utility.

Steps

- 1. Download the secedit.exe executable file from the following NOW site: http://now.netapp.com/eservice/toolchest
- 2. Follow the instructions in the Secedit_Readme.txt file to generate the job definition file.

You can also use the secedit. exe utility to edit and update the job definition file.

Managing the job definition file with a text editor

You can generate, update, and then validate the job definition file using a text editor.

Steps

- 1. Create a text file (for example, security-base.sec) or edit an existing job definition file.
- 2. Copy the new or updated file to a directory on your storage system (for example, /vol/vol0/templates/).
- 3. Check the validity of the file before you apply the definitions to jobs by running the fsecurity apply command with the -c option.

Note: If any line in the definition file is invalid, the security job will not be created when the fsecurity apply command is run.

Specifying job definition file elements

When you are defining your security settings in the job definition file, you can apply bulk security settings (permissions and auditing) by specifying a propagation mode.

About this task

Specifying a propagation mode allows you to quickly and effectively configure these settings without the performance degradation caused by applying them over a network.

The propagation modes are:

- 0 = Propagate inheritable permissions to all subfolders and files (Propagate)
- 1 = Do not allow permissions on this file or folders to be replaced (Ignore); this mode is not currently available
- 2 = Replace existing permissions on all subfolders and files with inheritable permissions (Replace)

The following is an example of an fsecurity job description file.

```
cb56f6f4

1,0,"/vol/vol0/qt1",0,"D:(A;CIOI;0x1f01ff;;;DOMAIN\Administrator)"

1,1,"/vol/vol0/qt2",0,"D:(D;CIOI;0x000002;;;Everyone)"
```

The first line, the string cb56f6f4, is mandatory, and is always the same. The following table describes how the elements in the second line of the example apply security settings to a qtree called /vol/vol0/qt1.

Sample Element	Description	
1	NTFS security type	
0	Standard security; Storage-Level Access Guard security not set	
"/vol/vol0/qt1"	Path of the target storage object (double quotes are required for this field)	
0	Propagation mode (0 stands for "propagate" in this example)	
"D:(A;CIOI; 0x1f01ff;;;DOMAIN \Administrator)"	SDDL representation of a DACL that gives the domain administrator Full Control (double quotes are required for this field)	

For more information about the format and syntax of the job definition file, see the fsecurity(5) man page.

Creating a security job and applying it to the storage object

The fsecurity apply command is used to create a security job based on the job definition file. This command is also used to apply Storage-Level Access Guard to a gtree or volume, or bulk security settings to files and directories. Using this command also allows you to set SACLs for auditing at the qtree and volume level.

About this task

You can apply the following options when creating a security job:

- The -c option lets you check the validity of the job without actually applying the contents.
- The -i option lets you ignore errors and continue to process the job.
- The -v lets you view each task within the job as it is generated.

For a complete description of the fsecurity apply command and its options, refer to the fsecurity apply(1) man page.

Security jobs can be run simultaneously by different administrators, and can conflict with one another

Step

1. Enter the following command:

fsecurity apply job_definition_file_path

Example

fsecurity apply /vol/vol0/templates/security-base.sec

Added security job 94089

The job ID is used to monitor the status of, or cancel, the job.

Checking the status of or canceling a security job

The fsecurity status command can be used to view the status of jobs that are currently running and the completion status of the previous 15 jobs.

About this task

The fsecurity cancel command can be used to stop all of the currently running jobs. If a job ID is specified, only that job will stop.

Note: Completed jobs cannot be canceled.

For a complete description of these commands, refer to the fsecurity status(1) and fsecurity cancel(1) man pages.

Step

1. Perform one of the following actions.

If you want to	Then
View job status	Enter the following command:
	fsecurity status [job_id]
Cancel a job	Enter the following command:
	fsecurity cancel [job_id] all
	Result: The job ID is used to cancel a specific job, and the option all is to cancel all jobs.

Displaying the security settings on files and directories

The fsecurity show command can be used to view the security settings on files and directories.

About this task

The output of this command contains the security style of the gtree or volume that the file or directory resides in. The current security style varies in mixed qtree environments and depends on which security style is currently active on the storage object.

When specifying a file or directory path, wildcards can be used to list the security for the contents of a directory.

For a complete description of this command, refer to the fsecurity show(1) man page.

Step

1. Enter the following command:

fsecurity show file_directory_qtree_path [option]

You can also specify the inode number of the file or directory (instead of the file or directory path), as shown in the following example.

```
fsecurity show -v volume_name -i inode_number [option]
```

For a complete listing of options and description of command output, see the fsecurity_show(1) man page.

Removing the Storage-Level Access Guard

The fsecurity remove-guard command can be used to remove the Storage-Level Access Guard from a qtree or volume. A qtree cannot be deleted if Storage-Level Access Guard is applied to it. For more information, refer to the fsecurity remove-guard(1) man page.

Step

1. Enter the following command:

```
fsecurity remove-guard volume_qtree_path
```

Note: Removing the Storage-Level Access Guard does not remove the standard file-level security (such as NTFS security) that is present on the files and directories within a qtree or volume.

Auditing system access events

Data ONTAP audits logon, logoff, and file access events similarly to Windows. There are some differences, however, in how you enable auditing and how you manage the files that log audit event information.

Next topics

About auditing on page 265

Events that Data ONTAP can audit on page 266

Configuring system event auditing on page 267

Viewing and understanding event detail displays on page 279

About auditing

When you configure Data ONTAP for auditing, the event log file and the settings for all options persist across a reboot or if CIFS is terminated or restarted.

Data ONTAP auditing can be performed in two ways:

 CIFS auditing refers to auditing access events from Windows clients that access data on the storage system using the CIFS protocol. • NFS auditing refers to auditing access events from UNIX clients that access data on the storage system using the NFS protocol.

Both CIFS and NFS auditing can be configured on a storage system. Each type has different configuration requirements and audit capabilities.

Auditing is not currently supported for other file access protocols.

Events that Data ONTAP can audit

You can enable auditing for several categories of events.

The following categories can be audited:

- Logon and logoff events (available only with CIFS auditing enabled)
- Local user and group account management (available only with CIFS auditing enabled)
- File access events at the file and directory level

Note: You must activate access auditing for individual files and directories.

• File access events at the qtree or volume level

Note: Auditing of events at the qtree or volume level is available only by applying Storage-Level Access Guard security.

Event ID	Event	Description	Category
516	AdtEvntDiscard	Audit events were lost	Audit Log
517	AdtLogClear	Audit log was cleared	Audit Log
528	AdtSuccessfulLogon	Local logon	Logon/Logoff
529	AdtUnknownUser	Unknown user name or bad password	Logon/Logoff
530	AdtCantLogonNow	Account logon time restriction	Logon/Logoff
531	AdtAccountDisabled	Account currently disabled	Logon/Logoff
532	AdtUserAccountExpired	User account has expired	Logon/Logoff
533	AdtCantLogonHere	User can't log on to this computer	Logon/Logoff
534	AdtLogonTypeRestricted	User not granted logon type here	Logon/Logoff
535	AdtPasswordExpired	User's password has expired	Logon/Logoff
536	AdtNetLogonInactive	The NetLogon component is not active	Logon/Logoff

Event ID	Event	Description	Category
537	AdtUnsuccessfulLogon	Logon failed for reasons other than above	Logon/Logoff
538	AdtUserLogoff	Local or network user logoff	Logon/Logoff
539	AdtLockedOut	Account locked out	Logon/Logoff
540	AdtSuccessfulNetLogon	Network (CIFS) logon	Logon/Logoff
560	AdtObjOpen	Object (file or directory) open	File Access
562	AdtHandleClosed	Handle that resulted in AdtObjOpen is closed	File Access
563	AdtObjOpenForDelete	Object (file or directory) open for deletion	Logon/Logoff
567	AdtObjAccessAttempt	Object access (read, write, etc.)	File Access
612	AdtPolicyChange	Audit policy changed	Policy Change
624	AdtUserCreated	User created	Account Management
630	AdtUserDeleted	User deleted	Account Management
635	AdtGroupCreated	Group created	Account Management
636	AdtLclGrpMemberAdded	Security enabled local group member added	Account Management
637	AdtLelGrpMemberRemo ved	Security enabled local group member removed	Account Management
638	AdtGroupDeleted	Group deleted	Account Management

Configuring system event auditing

You must perform several tasks to configure system event auditing.

Steps

- 1. Determine what events you want to audit. For example, if you want to audit all the events on a volume or qtree, apply the Storage-Level Access Guard security using the fsecurity command.
- 2. If you want to audit file and directory access events, set your system access control lists (SACLs).
- 3. Enable CIFS auditing and/or NFS auditing.
- **4.** You want to use Live View to manage auditing, enable Live View. Otherwise, familiarize yourself with audit log management.

5. Use Event Viewer to display audit events.

Next topics

Setting SACLs on page 268

Configuring Data ONTAP for CIFS auditing on page 269

Configuring Data ONTAP for NFS auditing on page 270

Configuring Live View on page 272

Saving and clearing audit events on page 273

Setting SACLs

System access control lists (SACLs) can be used to enable auditing access on files and directories.

There are three ways to set SACLs for auditing access:

- If you want to audit access events on all files and directories within a volume or qtree, it is recommended that you set SACLs by applying Storage-Level Access Guard security.
- If you want to audit access events on individual files and directories, you can set SACLs in two
 ways:
- Using your Windows Explorer GUI.
- Using the fsecurity command

Note: Make sure that you select only the events you need to audit, as selecting too many audit options might impact system performance.

To enable auditing access on individual files and directories, complete the following steps on the Windows administration host.

Steps

- 1. Select the file or directory for which you want to enable auditing access.
- 2. Right-click on the file or directory, and select **Properties.**
- 3. Select the **Security** tab.
- 4. Click Advanced.
- 5. Select the **Auditing** tab.
- **6.** Add, edit, or remove the auditing options you want.

For more information on how to set these options, see your Windows documentation.

Configuring Data ONTAP for CIFS auditing

When you enable or disable CIFS auditing, you enable auditing of policy change events. There is not a separate CIFS option to enable policy change events at this time.

Following are the prerequisites for CIFS auditing:

- CIFS must be licensed and enabled on the storage system before enabling auditing.
- The file or directory to be audited must be in a mixed or NTFS volume or qtree. You cannot audit CIFS events for a file or directory in a UNIX volume or qtree unless Storage-Level Access Guard is enabled.
- · You must specify access events to record.
- Event auditing is turned off by default. To identify events for auditing, you must enable individual options and enable auditing.

Step

1. Perform one of the following actions.

If you want to turn auditing on or off for	Then
File access events	Enter the following command:
	options cifs.audit.file_access_events.enable {on off}
Logon and logoff	Enter the following command:
events	options cifs.audit.logon_events.enable {on off}
Local account	Enter the following command:
management events	<pre>options cifs.audit.account_mgmt_events.enable {on off}</pre>
	Note: You use MMC Event Viewer to view changes to the account management events.
All events	Enter the following command:
	<pre>cifs audit {start stop}</pre>
	Alternatively, you can start and stop CIFS auditing using the cifs.audit.enable option. For example, entering the following command is the equivalent of using the cifs audit start command:
	options cifs.audit.enable {on off}
	Use on to start CIFS auditing or off to stop auditing.
	Note: CIFS auditing is disabled by default.

Configuring Data ONTAP for NFS auditing

NFS auditing can record access events for files and directories, but it cannot record logon, logoff, and other events supported by CIFS auditing. The file or directory to be audited can be in a volume or gtree of any security style (NTFS, UNIX, or mixed).

Following are the prerequisites for NFS auditing:

- CIFS must be licensed and enabled on the storage system before enabling NFS auditing.
- CIFS auditing must be enabled on the storage system before enabling NFS auditing. Auditing is disabled by default.
- You must identify events to record.

Next topics

Specifying NFS audit events on page 270 How the filter file controls NFS audit events on page 271 Enabling NFS auditing on page 271

Specifying NFS audit events

To specify events for NFS auditing in an NTFS or mixed security style qtree or volume, you must set system access control lists (SACLs) on files and directories.

Steps

1. Create the log filter file (usually called /etc/log/nfs-audit) on the storage system. This file is used to identify which file events get included in the audit log by default. The filter file has no content.

Note: You must create the NFS log filter file in an NTFS or mixed style volume or qtree. If you do not, you will not be able to set a SACL on the filter file, which is required for auditing.

- 2. Set the cifs.audit.nfs.filter.filename option to identify the filter file. For more information about the cifs.audit.nfs.filter.filename option, see the options(1) man page.
- **3.** Set the filter file's system access control list (SACL).

You can create an NFS filter file for auditing events in NTFS or mixed security style gtrees, but SACLs set on individual files and directories take precedence over the SACL set on the filter file.

How the filter file controls NFS audit events

The log filter file controls file audit events by means of the SACL you set on it. Setting a SACL on the filter file has the same effect as setting the same SACL on every file and directory on the storage system.

Note: Because the log filter file SACL can potentially generate audit events from every file and directory on the storage system, enabling NFS auditing with the log filter file can affect system performance.

The effect of the filter file depends on the security setting of the qtree in which the files are located.

When an operation is performed on files in a UNIX security style, the event is logged depending on the SACL on the filter file.

When an operation is performed on files in an NTFS or mixed security-style qtree that has no SACL set, the event is logged depending on the SACL on the filter file.

However, if SACLs are set on individual files or directories, these SACLs take precedence over the SACL set on the filter file.

Enabling NFS auditing

You can enable NFS auditing by performing several tasks.

Steps

1. In the /etc/log directory on the storage system, create a file called nfs-audit.

Note: Steps 1 and 2 are mandatory for auditing in a UNIX security style qtree but optional for auditing in NTFS or mixed security style qtrees.

2. To identify the NFS log filter file, enter the following command:

```
options cifs.audit.nfs.filter.filename /etc/log/nfs-audit
```

3. To enable auditing of file access events, enter the following command:

```
options cifs.audit.file_access_events.enable on
```

Note: Auditing of file access and logon events is turned off by default.

4. To enable NFS auditing, enter the following command:

```
options cifs.audit.nfs.enable on
```

- **5.** Configure audit log management.
- **6.** On the Windows administration host, set the filter file's system access control list (SACL).

For more information about the options described in these steps, see the options(1) man page.

Configuring Live View

When Live View is enabled, an Access Logging Facility (ALF) daemon runs once a minute, flushing audit events from memory to the internal log file /etc/log/cifsaudit.alf on disk.

The ALF daemon also attempts to save and convert ALF records to EVT records that can be viewed by Event Viewer. It does so either once every minute, or when the .alf file becomes 75 percent full.

EVT records are stored in three files in the /etc/log directory:

- fixedsection
- varsectiona
- varsectionb

The ALF daemon uses these files to service Eventlog RPC requests from Windows clients running Event Viewer. When Live View is enabled, Event Viewer displays the most recent audit events up to 5,000 records.

Each time new records are saved from the internal log file, they are written to the Live View files and they are also backed up into EVT files. The backup files are saved in the /etc/log directory with a timestamp as part of their name.

Audit events can be viewed in real-time and backup EVT files can be viewed as static files using Event Viewer.

Note: Beginning in Data ONTAP 7.2.2, Live View can be enabled together with cifs.audit.autosave options, which control the size of the internal audit file and how it is saved.

Step

1. Perform one of the following actions.

If you want to	Then
	Enter the following command:
Live View	options cifs.audit.liveview.enable {on off}
	Use on to enable Live View or off to disable it.
	Note: Before enabling Live View, you must enable auditing on the storage system. Live View is disabled by default.
Clear the current ALF and EVT files	Enter the following command:
	cifs audit clear Result: The internal cifsaudit.alf log file and the current EVT log files in the / etc/log directory are cleared. However, any backup EVT files with timestamps are not affected by this command.

Saving and clearing audit events

You can specify when automatic saves occur, the maximum number of automatically-saved files, and the maximum size of the cifsaudit.alf file. You can also clear the cifsaudit.alf file.

Next topics

Where Data ONTAP logs audit event information on page 273

Size and format of the internal and external log files on page 273

Data ONTAP event log updates on page 273

Specifying the external event log location on page 274

Saving audit events to the event log manually on page 274

Specifying when automatic saves occur on page 275

Specifying the maximum number of automatically saved files on page 278

Specifying the maximum size of the cifsaudit.alf file on page 278

SNMP traps for auditing events on page 279

Clearing the cifsaudit.alf file on page 279

Where Data ONTAP logs audit event information

Audit event information is stored in an internal log file, /etc/log/cifsaudit.alf. If you do not use Live View, you should periodically save the contents of this file to an external EVT event log file either manually or by setting up automatic saving of this file.

By default, the external event log is the /etc/log/adtlog.evt file. You can specify another file as the event log. If the specified file does not already exist, Data ONTAP creates the file when it saves information to the file. The directory containing the file, however, must exist; otherwise, an error message appears when you specify the file.

Size and format of the internal and external log files

You can specify the maximum size of the internal cifsaudit.alf log file between 524,288 bytes (512K) and 68,719,476,736 bytes (64 GB). The default size is 524,288 bytes.

The external event log (.evt file) that is generated from the cifsaudit.alf file will be larger, because the compressed contents of the cifsaudit.alf file are expanded and reformatted in the external event log file. The external event log is in Windows format. You can view it with Event Viewer. The cifsaudit.alf log file is internally formatted and cannot be viewed with Event Viewer.

Data ONTAP event log updates

Data ONTAP updates the event log under certain conditions to ensure that audit event information is saved.

To save audit event information to the external event log, you can issue the cifs audit save or cifs audit clear command, or enable automatic saving of the event information. Data ONTAP

does not update the event log when the log is being viewed by a client. However, the file access information gathered when the event log is open is not lost.

It is important to issue the cifs audit save command frequently or enable frequent automatic saves to prevent loss of event information. If your event generation rate is very high, the cifsaudit.alf file fills quickly and might overwrite older events before they are saved to the event log.

Specifying the external event log location

If you prefer to store event logs in a different location, you can use the cifs.audit.saveas option to specify the location.

Step

1. To specify where Data ONTAP logs audit event information, enter the following command:

```
options cifs.audit.saveas filename
```

filename is the complete path name of the file to which Data ONTAP logs audit event information. You must use .evt as the file extension. You must use quotes around path names that contain a space.

Examples

```
options cifs.audit.saveas /etc/log/mylog.evt
options cifs.audit.saveas "/home/my event log/audit.evt"
```

Saving audit events to the event log manually

You can use the cifs audit save command to update the event log manually.

Note: You do not have to manually save audit events after executing the cifs audit clear command; in this case, Data ONTAP saves audit events automatically.

Step

1. Enter the following command to update the event log:

```
cifs audit save [-f]
```

The -f option allows you to overwrite the existing event log. If the event log does not exist, you can omit the -f option.

Data ONTAP writes to the event log the event information gathered since the last event log update.

Specifying when automatic saves occur

You can specify that audit events are automatically saved to the event log based on a time interval or the size of the internal log file—that is, how full the cifsaudit.alf file is.

If you specify both a size threshold and a time interval, audit events are saved to the event log whenever the size threshold or the time interval is reached.

Each time the internal log file is automatically saved to the external event file, an extension is added to the base name of the event file. You can select one of the following types of extensions to be added:

- counter
- timestamp

If one of these extensions is not specified, a timestamp is used as the file extension; however, the value "timestamp" is not displayed.

The storage system saves the event files for up to six weeks. You can specify a limit to the number of event files that can be saved.

Next topics

Enabling automatic saves based on internal log file size on page 275

Enabling automatic saves based on a time interval on page 276

Specifying counter extensions on page 277

Specifying timestamp extensions on page 277

Enabling automatic saves based on internal log file size

If you have enabled automatic saves based on the size of the internal log file, you can specify the size threshold.

The default size threshold for the internal log file is 75 percent, so that whenever the internal log file is 75 percent full, the contents are automatically saved to the external event file. You can specify the threshold as a percentage of the size of the internal log file or as an absolute size.

The following table shows the units of measure and values you can use to specify the size threshold of the internal log file for automatic saves.

Units of measure	Values
% (percentage of the cifsaudit.alf file)	1 to 100
k (kilobytes)	1 to 67108864
m (megabytes)	1 to 65526
g (gigabytes)	1 to 64

Step

1. Perform one of the following actions:

If you want to	Then
Specify the size threshold at which the internal log file is automatically saved	Enter the following command:
	options cifs.audit.autosave.onsize.threshold Nsuffix
	<i>N</i> is the value of the size threshold.
	suffix is the unit of measure.
	Example:
	options cifs.audit.autosave.onsize.threshold 90%
Enable or disable automatic saves based on the size of the internal log file	Enter the following command:
	options cifs.audit.autosave.onsize.enable {on \mid off}

Enabling automatic saves based on a time interval

If you have enabled automatic saves based on a time interval, you can specify the time interval.

The following table shows the units of measure and values you can use to specify the time interval for automatic saves.

Units of measure	Values
s (seconds)	1 to 60
m (minutes)	1 to 60
h (hours)	1 to 24
d (days)	1 to 7

Step

1. Perform one of the following actions:

If you want to	Then
Specify a different time interval for automatically saving the internal log file to the external event file	Enter the following command:
	options cifs.audit.autosave.ontime.interval Nsuffix
	<i>N</i> is the value of the time interval.
	suffix is the unit of measure.
	Example:
	options cifs.audit.autosave.ontime.interval 1d
Enable automatic saves based on a time interval	Enter the following command:
	<pre>options cifs.audit.autosave.ontime.enable {on off}</pre>

Specifying counter extensions

If you select "counter" for automatic file naming, the extension is a number value.

When an automatic save occurs, the old event files are renamed using sequentially numbered extensions. The newest event file does not have a number value added to it.

For example, if the base file name is eventlog, when an automatic save occurs, the newest event file is named eventlog.evt, the previous eventlog.evt file is copied to eventlog1.evt, the eventlog1.evt file is copied to eventlog2.evt, and so on.

Step

1. Enter the following command:

options cifs.audit.autosave.file.extension counter

Specifying timestamp extensions

If you select timestamp for automatic file naming, the file name is in a timestamp format.

The format is

base_name_of_event_file.YYYYMMDDHHMMSS.evt

Parameter	Description
YYYY	The 4-digit year
ММ	The 2-digit month
סס	The 2-digit day
НН	The 2-digit hour
ММ	The 2-digit minute

Parameter	Description
SS	The 2-digit second

Step

1. Enter the following command:

options cifs.audit.autosave.file.extension timestamp

Specifying the maximum number of automatically saved files

You can use the cifs.audit.autosave.file.limit option to specify the maximum number of event files that can be saved automatically.

Step

1. Enter the following command:

```
options cifs.audit.autosave.file.limit value
```

value is a number from 0 to 999.

Note: If the value of this option is set from 1 to 999, the oldest file is always overwritten once the limit of files exists on the storage system. However, if the value of this option is set to 0, there is no limit to how many EVT files are automatically saved on the system.

Specifying the maximum size of the cifsaudit.alf file

You can use the cifs.audit.logsize option to specify the maximum size of the cifsaudit.alf file

Step

1. Enter the following command:

```
options cifs.audit.logsize size
```

size is the number of bytes. If you enter an invalid number, a message displays the range of acceptable values.

Note: Data ONTAP overwrites the oldest data after the cifsaudit.alf file reaches the maximum size. To prevent loss of event data, you should save the cifsaudit.alf file before it is filled. By default, when the file is 75 percent full, a warning message is issued. Additional warning messages are sent when the file is nearly full and data is about to be overwritten, and when data has already been overwritten.

SNMP traps for auditing events

Data ONTAP includes SNMP traps to provide a trigger for certain actions (such as notification) based on information about certain auditing events.

If you want CIFS clients to receive SNMP traps for auditing events, you must register the clients using the SNMP feature of Data ONTAP. Registered clients must have SNMP software that listens for SNMP traps.

An SNMP trap is issued whenever any of the following occurs:

- The specified time interval is reached and the cifsaudit.alf file is saved.
- The specified size threshold is reached and the cifsaudit.alf file is saved.
- The default size threshold, 75 percent full, is reached and the cifsaudit.alf file is in danger of wrapping and overwriting event data, but the file is not saved because the cifs.audit.autosave.onsize.enable and cifs.audit.autosave.ontime.enable options are turned off.
- The cifsaudit.alf file has wrapped and event data has been overwritten, because none of the automatic save options are turned on.

Clearing the cifsaudit.alf file

If you want to remove existing information and start over with an empty log file, you can use the cifs audit clear command to clear the internal cifsaudit.alf file.

Step

1. Enter the following command:

```
cifs audit clear
```

If the audit has started, the internal cifsaudit.alf log file is cleared. If the audit has stopped, the cifsaudit.alf file is deleted. After you execute this command, Data ONTAP automatically saves the event log.

Viewing and understanding event detail displays

You can view real-time audit events captured with Live View, the external event log (.evt file) that you saved, or a backup log file created by Live View.

About this task

The following event detail displays are available:

- Network logon
- · Unsuccessful network logon
- Network logoff

- · Windows file access
- · UNIX file access
- Unsuccessful file access
- · Lost record event
- Clear audit log event

Next topics

Ways to view and display audit events on page 280

Viewing real-time audit events with Live View on page 280

Viewing static event log files on page 281

Windows file access detail displays on page 281

UNIX file access detail displays on page 282

Unsuccessful file access and lost record event detail displays on page 282

Ways to view and display audit events

You can view audit events with Microsoft Event Viewer from a Windows client, either from Administrative Tools in the Control Panel or from the Microsoft Management Console (MMC).

There are two ways to view audit events:

• In a real-time display. When the Live View feature is enabled, the EVT event log file is automatically refreshed every minute. This provides a continuous up-to-date view in Event Viewer of the 5,000 most recent audit events.

Note: To use the Live View feature, your Windows client must be using Windows 2000 or later.

• In a static display. You can manage the EVT event log yourself, either manually or by setting up automatic saving. In this case Event Viewer displays the most recently saved version of the log file contents, depending on how you manage the file.

Viewing real-time audit events with Live View

You can use the Windows Event Viewer to view real-time audit events captured with LiveView.

Before viewing real-time audit events, you must configure Live View.

Steps

- 1. From a Windows client, start Event Viewer from Administrative Tools in the Control Panel or from the Microsoft Management Console.
- 2. Select Action > Connect to Another Computer.
- 3. In the dialog box, enter the name of the storage system you want to audit and click **OK**.
- **4.** Select the **Security** entry on the left side of the application.

The right side of the application is populated with the latest audit events captured on the storage system (up to 5,000 events).

Viewing static event log files

You can use a Windows client to view the external event log (.evt file) that you saved, or to view a backup log file created by Live View.

Steps

- 1. From a Windows client, start Event Viewer from Administrative Tools in the Control Panel or from the Microsoft Management Console.
- 2. Select Log > Open.

Note: Do not try to open the event log by selecting Log > Select Computer and doubleclicking the storage system name. If you do, the Event Viewer displays the error message "The RPC server is unavailable," because Data ONTAP does not communicate with the Event Viewer with RPC calls unless Live View is enabled.

3. Choose the event log on the storage system.

Windows file access detail displays

Windows file access detail displays show many types of information.

The following table describes the fields of Windows file access detail displays.

Field	Description	
Object Server	The name of the subsystem server process calling the audit check function. This is always SECURITY because this is a security log.	
Object Type	The type of object being accessed.	
Object Name	The name (such as a file name) of the object being accessed.	
New Handle ID	The new handle identifier of the open object.	
Operation ID	A unique identifier associating multiple events resulting from a single operation.	
Process ID	The identifier of the client process accessing the object.	
Primary User Name	The user name of the user requesting the object access. When impersonation is taking place, this is the user name with which the server process is logged on.	

Field	Description	
Primary Domain	The name of the computer, or SYSTEM if the user identified by Primary User Name is SYSTEM. If the computer is a member of a Windows NT Server domain, this can also be the name of the domain containing the primary user's account.	
Primary Logon ID	A unique identifier assigned when the primary user logged on.	
Client User Name	Your login name.	
Client Domain	The name of your computer or the domain containing the client user's account.	
Client Logon ID	A unique identifier assigned when the client user logged on.	
Accesses	The types of accesses to the object that were attempted.	
Privileges	Your privileges.	

UNIX file access detail displays

UNIX file access detail displays show the same kind of information as the Windows file access detail displays, but NFS access appears instead of an object name, because the file is accessed through NFS

In addition, UNIX file access detail displays show the following information about the file that you are auditing:

- The ID of the volume in which the file is located
- The ID of the latest Snapshot[™] copy in which the file is located
- The inode of the file

This information enables you to find the file using the find -inum command from an NFS client.

Unsuccessful file access and lost record event detail displays

Unsuccessful file access detail displays show failed attempts to access a file. Furthermore, if Data ONTAP cannot create an audit record, the lost record event detail displays give a reason

For example, an unsuccessful file access occurs when a user tries to access a file but does not have permission to access it. The display shows the ID of the user who tried to access the file and an indication that the access attempt was unsuccessful.

If Data ONTAP cannot create an audit record, the lost record event detail displays give a reason, such as the following:

Internal resources allocated for the queueing of audit messages have been

```
exhausted, leading to the loss of some audits.
Number of audit records discarded:
```

Controlling CIFS access to symbolic links

A symbolic link is a special file created by NFS clients that points to another file or directory. A symbolic link is, in some respects, similar to a "shortcut" in the Windows environment.

About this task

There are two kinds of symbolic links:

- Absolute symbolic links begin with a slash (/) and are treated as a path derived from the root of the file system.
- Relative symbolic links begin with a character other than a slash (/) and are treated as a path relative to the parent directory of the symbolic link.

CIFS clients cannot create symbolic links, but they can follow the symbolic links created by NFS clients.

There are special requirements to enable CIFS access to the following types of symbolic links:

- Absolute symbolic links. Since the destination of an absolute symbolic link depends on the type of UNIX mount, CIFS clients need additional information to interpret absolute symbolic links.
- Relative symbolic links to destinations on the same storage system outside the share in which the relative symbolic link is located. By default, Data ONTAP does not allow a CIFS client to follow a symbolic link outside the share to which the CIFS client is authenticated.

Next topics

Enabling CIFS clients to follow symbolic links on page 284

Specifying how CIFS clients interact with symbolic links on page 284

Why you should avoid symbolic links to files on page 285

About Map entries on page 285

About Widelink entries on page 285

About disabling share boundary checking for symbolic links on page 286

Redirecting absolute symbolic links on page 287

How the storage system uses Map and Widelink entries on page 289

Enabling CIFS clients to follow symbolic links

You can use the cifs.symlinks.enable option to enable CIFS access to symbolic links after they have been disabled.

About this task

The cifs.symlinks.enable option is enabled by default.

Step

1. Enter the following command to enable CIFS access to symbolic links:

options cifs.symlinks.enable on

Result

CIFS clients will directly follow relative symbolic links to destinations in the same share

Specifying how CIFS clients interact with symbolic links

You can specify how CIFS clients interact with symbolic links by creating Map entries in the /etc/ symlink.translations file (absolute symbolic links only), creating Widelink entries in the / etc/symlink.translations file (absolute symbolic links only), or disabling NT share boundary checking for symbolic links (relative and absolute symbolic links).

About this task

Use the following table to help determine which options you want to implement. The table shows for each option the types of destinations that symbolic links will be able to point to.

Symbolic link destination can be	Map entries	Widelink entries	No share boundary check
The same share on the same storage system	X	X	X
Another share on the same storage system		X	Х
A non-shared area of the same storage system			Х
A share on another storage system		X	
A share on another CIFS server or a desktop PC		X	

Why you should avoid symbolic links to files

You should prevent CIFS clients from following symbolic links that point to files because Data ONTAP can update the wrong files.

The wrong files might be updated because many CIFS client applications perform operations such as writing to a temporary file, renaming the original file to a backup name, then renaming the temporary file to the original name.

When client applications perform these operations, if the original file was targeted directly by a symbolic link, that file would be stored in the directory where the symbolic link was, and the renamed symbolic link would point to the original file rather than to the updated file.

Note: CIFS clients following symbolic links to directories, rather than to individual files, do not experience this problem.

About Map entries

Map entries are used to redirect absolute symbolic links on the storage system. You create Map entries in the /etc/symlink.translations file. Map entries allow CIFS clients to follow absolute symbolic links to target destinations within the same share.

Note: CIFS client users who follow symlinks to resources outside the link's share do not work, unless the cifs share -nosymlink strict_security option has been specified for the source share.

Map entries have the following requirements:

- To resolve an absolute symbolic link, there must be a Map entry in the /etc/ symlink.translations file that determines the destination of the link.
- The symbolic link destination must be in the same share as the link itself, or the link must be in a share for which the -nosymlink_strict_security option has been specified.

When you use Map entries to redirect absolute symbolic links, Windows share security is preserved for both the symbolic link and the destination, because they are in the same share. If you have both Map entries and Widelink entries in the symlink.translations file, the storage system uses the first matching entry it finds.

About Widelink entries

Widelink entries are another way to redirect absolute symbolic links on your storage system. You create Widelink entries in the /etc/symlink.translations file.

Widelink entries allow CIFS clients to follow absolute symbolic links to target destinations either on the same storage system or outside the storage system. They are enabled on a per-share basis.

Widelink entries have the following requirements:

The share in which the absolute symbolic links are located must be enabled for wide symbolic links.

- In order to resolve an absolute symbolic link, there must be a Widelink entry in the /etc/symlink.translations file that determines the destination of the link.
- The destination of the Widelink entry must be one of the following:
 - The same share as the symbolic link
 - Another share on the same storage system
 - A share on another storage system
 - A share on another CIFS server or desktop PC
- The CIFS client must have client-side support for Microsoft Distributed File System (DFS). Windows NT and later clients support DFS by default.

To follow Widelink entries, the CIFS client automatically requests and receives a DFS referral from the storage system to establish an authenticated connection with the target share. This preserves NT share security for both the symbolic link and the destination. Once the connection is established, the CIFS client can make new requests directly to the target share or server, thereby increasing performance.

If you have both Map entries and Widelink entries in the /etc/symlink.translations file, the storage system uses the first matching entry it finds.

Widelink entries have the following limitations:

- Even if the destination of the wide symbolic link is a file, it appears as a directory in directory listings. The system API for opening the file will correctly follow the wide symbolic link, but this might confuse certain applications. To avoid this problem, you should create a wide symbolic link that resolves to a directory, rather than a file.
- Windows 95, Windows 98, and Windows ME clients cannot follow a wide symbolic link to another wide symbolic link.
- Windows NT clients cannot display or modify ACLs in a share enabled for wide symbolic links. This restriction does not apply to Windows 2000 and later clients.
- Wide symbolic links cannot direct a client to a non-shared area on the destination machine.

About disabling share boundary checking for symbolic links

When you disable share boundary checking for symbolic links, CIFS clients can follow symbolic links anywhere on the storage system. This behavior is set on a per-share basis and affects both relative and absolute symbolic links.

Disabling share boundary checking for symbolic links has the following requirements:

- The share in which the symbolic links are located must be set to nosymlink_strict_security.
- In order to resolve an absolute symbolic link, there must be a Map entry in the /etc/symlink.translations file that determines the destination of the link.
- The destinations for relative symbolic links and for mapped absolute symbolic links might be in any shared or non-shared area of the storage system.

Disabling share boundary checking for symbolic links has the following limitations:

- Relative symbolic links cannot be used to span volumes; you must use absolute symbolic links.
- Symbolic links cannot be followed off the storage system to other systems.
- NT share security is preserved for the symbolic link itself because the CIFS client has to authenticate to connect to the share in which the symbolic link is located.
- NT share security is preserved for the destination of the symbolic link only if the destination is in the same share.
- NT share security is not preserved for the destination of the symbolic link if the destination is outside the share, because the CIFS client does not have to authenticate to the destination (which might or might not be a CIFS share).

Note: If you disable share boundary checking for symbolic links, be sure to secure any areas of the storage system that you do not want users to access. This is necessary because a user can create a symbolic link to any path on the storage system.

Redirecting absolute symbolic links

You can redirect absolute symbolic links on the storage system by creating Map entries in the /etc/ symlink.translations file or creating Widelink entries in the /etc/symlink.translations file

About this task

NFS clients interpret the file system location represented by an absolute symbolic link based on how the file systems are mounted on the client. CIFS clients do not have access to NFS clients' mount information.

To allow CIFS clients to follow absolute symbolic links on the storage system, you must redirect the absolute symbolic link so that CIFS clients can interpret the file system location represented by the absolute symbolic link. You can redirect absolute symbolic links by creating entries in the /etc/ symlink.translations file. The /etc/symlink.translations file performs the same role on the storage system as automounter tables on UNIX servers

Next topics

Creating Map entries on page 287 Creating Widelink entries on page 288

Creating Map entries

You can create Map entries by editing the /etc/symlink.translations file.

Steps

- 1. Open the /etc/symlink.translations file for editing.
- **2.** Enter one or more lines in the file using the following format:

Map template result

template is used to match absolute symbolic links.

result specifies a storage system path that is substituted for the matching absolute symbolic link

Note: To specify a space or pound (#) character in a file path, you must prepend a backslash (\) escape character.

Examples

```
Map /u/users/charlie/* /home/charlie/*
```

Map /temp1/* /vol/vol2/util/t/*

Map /u/users/bob\ smith/* /home/bob\ smith/*

Creating Widelink entries

You can create Widelink entries by editing the /etc/symlink.translations file.

Steps

- 1. Open the /etc/symlink.translations file for editing.
- **2.** Enter one or more lines in the file using the following format:

```
Widelink template [@qtree] result
```

template specifies the UNIX path name.

result specifies the CIFS UNC path name.

gtree allows multiple entries in different gtrees to have the same template value.

Note: Unlike in a Map entry, you can specify a space and pound (#) character in a file path without prepending a backslash (\) escape character. In fact, in a Widelink entry, a backslash character is a standard file path character in accordance with the Universal Naming Convention.

Examples

In the following examples, result uses CIFS path name syntax, with backslashes as separators, and allows an embedded space. The wildcard character (*) in the template path name represents zero or more characters, including the backslash character (\). In the result path name, the wildcard character represents text from the corresponding match in the template path name:

```
Widelink /eng/proj/* @/vol/vol2 \\filer\hw\proj\*
```

```
Widelink /eng/proj/* \\filer\sw\proj\*
```

How the storage system uses Map and Widelink entries

To allow CIFS clients to follow absolute symbolic links, the storage system searches the entries in the /etc/symlink.translations file in sequential order until a matching entry is found or the lookup fails.

The storage system uses the first matching entry it finds to generate a path to the destination. Therefore, it is important to put the most restrictive entries first to prevent premature mapping errors.

This example shows how to list Map entries. /u/home/* is more specific than /u/*:

```
Map /u/home/* /vol/vol2/home/*

Map /u/* /vol/vol0/*

This example shows how to list Widelink entries:

Widelink /u/docs/* \\filer\engr\tech pubs\*

Widelink /u/* \\filer\engr\*
```

Optimizing NFS directory access for CIFS clients

You can optimize CIFS client access to an NFS directory by configuring Data ONTAP to convert non-Unicode directories to Unicode format when either CIFS clients or NFS clients access directories and create only Unicode-formatted directories, thereby eliminating the need to convert formats.

About this task

Note: If you intend to share files between CIFS and NFS clients, configure Data ONTAP to create directories in Unicode format immediately after installing Data ONTAP. This will to ensure that all new directories are created in Unicode format.

When you first install Data ONTAP, directories created by NFS clients are created in non-Unicode format and directories created by CIFS clients are in Unicode format. Because of this, CIFS directories are directly accessible to NFS clients, but NFS directories are not directly accessible to CIFS clients. To provide a CIFS client with access to an NFS directory, your storage system must first convert the NFS directory to Unicode format. This is done automatically ("on the fly"), as the storage system receives the access request. Depending on the amount of data involved, Unicode conversion can take time and consume storage system resources.

Next topics

Creating Unicode-formatted directories on page 290 Converting to Unicode format on page 290

Creating Unicode-formatted directories

You can use the vol options command to cause Data ONTAP to create all directories in Unicode format

Step

1. Enter the following command:

```
vol options volume_name create_ucode on
```

This operation might fail if a nondisruptive volume movement is being performed on the target volume.

Converting to Unicode format

By default, Data ONTAP performs Unicode conversion of a directory only when a CIFS client requests access. You can reduce the time required for Unicode conversion by limiting the number of entries in each directory to less than 50,000.

About this task

Once you already have large directories, you can minimize the performance impact of Unicode conversion by preemptively forcing Unicode conversion for large directories as described in the procedure below.

To force Unicode conversion of large directories and to convert directories to Unicode format when they are accessed from both CIFS and NFS clients, complete the following steps.

Steps

- 1. If you have a directory that contains more than 50,000 files, create a new CIFS directory from a Windows client on the same volume and in the same gtree as the directory you want to convert, use the NFS my command to move the files into the directory you just created, and optionally remove the old directory and assign its name to the new directory.
- **2.** Enter the following command:

```
vol options volume name convert ucode on
```

This operation might fail if a nondisruptive volume movement is being performed on the target volume.

Unicode conversion is performed when NFS clients access files.

Note: Do not enable the convert_ucode option when you have directories that contain more than 50,000 files.

Preventing CIFS clients from creating uppercase file names

You can set the cifs.save_case option to off to prevent CIFS clients from creating uppercase filenames.

About this task

Older, 16-bit CIFS clients that open and save files change the file name by changing the lowercase or mixed-case characters to all uppercase characters. You can prevent these uppercase file names by forcing Data ONTAP to store CIFS file names using lowercase characters.

Step

1. Enter the following command:

options cifs.save_case off

Accessing CIFS files from NFS clients

Data ONTAP uses Windows NT File System (NTFS) security semantics to determine whether a UNIX user, on an NFS client, has access to a file in a mixed or NTFS qtree.

About this task

Data ONTAP does this by converting the user's UNIX User ID (UID) into a CIFS credential, then using the CIFS credential to verify that the user has access rights to the file. A CIFS credential consists of a primary Security Identifier (SID), usually the user's Windows user name, and one or more group SIDs that correspond to Windows groups of which the user is a member.

The time Data ONTAP takes converting the UNIX UID into a CIFS credential can be from tens of milliseconds to hundreds of milliseconds because the process involves contacting a domain controller. Data ONTAP maps the UID to the CIFS credential and enters the mapping in a WAFL credential cache to reduce the verification time caused by the conversion. You can control the WAFL credential cache to further reduce the time Data ONTAP takes to verify rights. You can also monitor WAFL credential cache statistics to help you determine what CIFS credentials are currently in the WAFL credential cache.

Next topics

Adding mapping entries to the WAFL credential cache on page 292

Deleting mapping entries from the WAFL credential cache on page 292

Setting how long mapping entries are valid on page 293

Monitoring WAFL credential cache statistics on page 294

Managing mapping inconsistencies on page 295

Tracing CIFS logins on page 296
Tracing domain controller connections on page 296

Adding mapping entries to the WAFL credential cache

You can add mapping entries to the WAFL credential cache at any time. Normally, this is not necessary because entries are created automatically as the storage system is accessed.

Before you begin

You must have the names and IP addresses of the entries you want to add to the WAFL credential cache.

About this task

The best way to add entries is in a script that loads the WAFL credential cache with entries at boot time. This immediately puts the entries in the WAFL credential cache rather than waiting for Data ONTAP to create the entries in the course of accessing the files.

Note: The cache is limited to 10,000 entries. If you exceed this limit, the older entries are deleted.

Step

1. Enter the following command:

```
wcc -a -u uname -i ipaddress
```

uname specifies the UNIX name of a user.

ipaddress specifies the IP address of the host that the user is on.

Deleting mapping entries from the WAFL credential cache

You can delete entries from the WAFL credential cache at any time. You might want to delete entries after making security changes, to ensure they take effect immediately.

Before you begin

You must have the name for the entry you want to delete from the WAFL credential cache. To further narrow down the selection, you can optionally specify an IP address.

About this task

Security changes might not take effect immediately when you change a user's rights. For example if you remove a user from a group and a mapping for that user already exists in the WAFL credential cache, the user will continue to have that group's access to files until the entry in the WAFL credential cache times out automatically. The default credential cache timeout period is 20 minutes.

Step

1. Enter the following command:

```
wcc -x name
```

name is one of the following specifications: -s followed by the Windows user name or group name found in the CIFS credential or -u followed by the UNIX name found in the CIFS credential.

Note: If name is the name of a group, this procedure deletes all members of that group from the WAFL credential cache.

You can further narrow the specification of a user by adding -i, followed by the IP address of the host that the user is on. If you do not specify name, all entries are deleted.

Example

wcc -x -u jdoe -i 10.100.4.41

Setting how long mapping entries are valid

Increasing the time that the CIFS credential remains in the WAFL credential cache after Data ONTAP updates it improves performance. Performance is improved because Data ONTAP doesn't have to take the time to create a CIFS credential to verify access to a file.

About this task

The disadvantage of increasing the time that CIFS credentials remain in the WAFL credential cache is that if you change a user's access rights, the change does not take effect until Data ONTAP updates the WAFL credential cache. In this case, the user might temporarily retain rights to a file to which you have just denied access.

If you do not expect problems of this type, you can increase the time that the credential entry is valid. If you need to see access right updates as they occur and slower performance is not an issue, you can use a smaller value than the default

Step

1. Enter the following command:

```
options wafl.wcc_minutes_valid n
```

n is the number of minutes you want each entry to be valid. It can range from 1 through 20,160. The default value is 20.

Monitoring WAFL credential cache statistics

By monitoring WAFL credential cache statistics, you can view what entries are currently cached and the UNIX UID-to-CIFS credential mapping. This information is useful when you need to know what entries are in the WAFL credential cache or what the access rights are for users listed in the entries.

Step

1. Enter the following command:

```
wcc -d uname
```

uname is the UNIX name of a user. Omit uname to list all credential entries in the WAFL credential cache. You can get more detailed information by appending -v to the command line. You can have up to three instances of the -v option (-vvv) per command; each instance represents an increasing level of detail.

Example

The following sample shows the output of statistics with the -d option:

wcc -d

```
tday (UID 10350) from 10.121.4.41 => NT-DOMAIN\tday*
Total WCC entries: 3; oldest is 127 sec.
Total Administrator-privileged entries: 1
* indicates members of "BUILTIN\Administrators" group
```

The following sample shows the output of statistics with the -v option used twice:

wcc -dvv

```
jdoe (UID 1321) from 10.121.4.41 => NT-DOMAIN\jdoe
       ******
UNIX uid = 1321
      NT membership
              NT-DOMAIN\jdoe
              NT-DOMAIN\Domain Users
NT-DOMAIN\SU Users
NT-DOMAIN\Installers
NT-DOMAIN\tglob
              NT-DOMAIN\Engineering
BUILTIN\Users
User is also a member of Everyone, Network Users,
       Authenticated Users
******
tday (UID 10350) from 10.121.4.41 => NT-DOMAIN\tday*
******
       UNIX uid = 10350
NT membership
NT-DOMAIN\tday
NT-DOMAIN\Domain Users
```

```
NT-DOMAIN\Domain Admins
NT-DOMAIN\SU Users
NT-DOMAIN\Installers
BUILTIN\Users
                BUILTIN\Administrators
User is also a member of Everyone, Network Users,
Authenticated Users
bday (UID 1219) from 10.121.4.41 => NT-DOMAIN\bday
        ******
        UNIX uid = 1219
NT membership
NT-DOMAIN\bday
NT-DOMAIN\Domain Users
NT-DOMAIN\Installers
NT-DOMAIN\SU Users
BUILTIN\Users
User is also a member of Everyone, Network Users,
Authenticated Users
*******
Total WCC entries: 3; oldest is 156 sec.
Total Administrator-privileged entries: 1
* indicates members of "BUILTIN\Administrators" group
```

Managing mapping inconsistencies

You can manage mapping inconsistencies by performing several tasks.

About this task

If a user cannot access a file that should be accessible, there are several possible reasons:

- You granted access recently and the WAFL credential cache does not have the new mapping entry. You can determine mapping inconsistencies between recently granted rights and the WAFL credential cache by comparing CIFS credential mappings. You can display mapping results for the user's UNIX name or user's Windows name.
- The NFS client could not obtain CIFS credentials. You can determine whether an NFS client can perform a CIFS login to the storage system by tracing CIFS logins.
- Depending on the NFS client, it might be necessary to wait for the NFS attribute cache to time out before changes to the CIFS credential take effect.

Steps

1. Display the current CIFS credential mapping of a UNIX name by entering the following command:

```
wcc -s uname
```

uname is the Windows user name. You can further narrow the specification of the user by adding -i, followed by the IP address of the host that the user is on. You can get more detailed

information by appending -v to the command line. You can have up to three instances of the -v option (-vvv) per command; each instance represents an increasing level of detail.

- 2. Note the CIFS credential information.
- **3.** To display information about all connected users, enter the following command:

```
cifs sessions -s
```

- **4.** Locate the user's information in the output.
- **5.** Compare the two CIFS credential mappings.
- **6.** If the CIFS credential mappings are different, disconnect the client by entering the following command:

```
cifs terminate workstation
```

Result

When the client reconnects, the CIFS credential mappings will be correct.

Tracing CIFS logins

You can trace CIFS logins by monitoring any attempt by an NFS client to obtain a CIFS credential.

About this task

Use CIFS login tracing carefully because it reports every CIFS login. Persistent use can result in excessive console and log messages, which can affect system performance. By default, the cifs.trace_login option is disabled. The option should only be enabled temporarily for diagnostic purposes. Keep it disabled all other times.

Step

1. Enter the following command:

```
options cifs.trace_login {on | off}
```

Use on to enable or off to disable CIFS login tracing.

Tracing domain controller connections

You can configure Data ONTAP to send messages to the console when it tries to improve the domain controller connection every few minutes.

About this task

Because tracing functions send frequent messages to the console and system log, do not persistently enable this option. By default, this feature is disabled.

Step

1. Enter the following command:

```
options cifs.trace_dc_connection {on | off}
```

Allowing CIFS clients without UNIX "execute" permissions to run .dll and .exe files

You can set the cifs.grant_implicit_exe_perm option to on to allow CIFS clients to run.dll and .exe files even when the UNIX executable bit is not set.

Step

1. Enter the following command:

```
options cifs.grant_implicit_exe_perm on
```

Result

Executables with only "read" UNIX permissions are implicitly granted execute permissions when run from a CIFS client.

File access using FTP

You can enable and configure the Internet File Transfer Protocol (FTP) server to let users of Windows and UNIX FTP clients access the files on your storage system.

Managing FTP

You can manage FTP by enabling or disabling it, configuring it, and viewing statistics related to it.

Next topics

Enabling or disabling the FTP server on page 299

Enabling or disabling the TFTP server on page 300

Enabling or disabling FTP file locking on page 300

Specifying the FTP authentication style on page 301

Enabling or disabling the bypassing of FTP traverse checking on page 302

Restricting FTP access on page 303

Managing FTP log files on page 305

Viewing SNMP traps that the FTP server generates on page 307

Viewing FTP statistics on page 309

Resetting FTP statistics on page 309

Specifying the maximum number of FTP connections on page 309

Specifying the maximum number of TFTP connections on page 310

Setting the FTP connection threshold on page 310

Specifying the TCP window size for FTP operations on page 310

Specifying the FTP idle timeout on page 311

Managing anonymous FTP access on page 311

Enabling or disabling the FTP server

You can enable or disable the FTP server by modifying the ftpd.enable option.

Step

1. Perform one of the following actions:

If you want the FTP server to be	Then
Enabled	Enter the following command:
	options ftpd.enable on
	The FTP server begins listening for FTP requests on standard FTP port 21.
Disabled	Enter the following command:
	options ftpd.enable off

By default, this option is off.

Enabling or disabling the TFTP server

You can enable or disable the TFTP server by modifying the tftpd.enable option.

Step

1. Perform one of the following actions:

If you want the TFTP server to be	Then
Enabled	Enter the following command:
	options tftpd.enable on
	The TFTP server begins listening for TFTP requests on standard FTP port 69.
Disabled	Enter the following command:
	options tftpd.enable off

By default, this option is off.

Enabling or disabling FTP file locking

To prevent users from modifying files while the FTP server is transferring them, you can enable FTP file locking. Otherwise, you can disable FTP file locking. By default, FTP file locking is disabled.

Step

1. Perform one of the following actions.

If you want FTP file locking to be	Then
Enabled for deleting and renaming	Enter the following command:
	options ftpd.locking delete
Enabled for deleting, renaming, and writing	Enter the following command:
	options ftpd.locking write
Disabled	Enter the following command:
	options ftpd.locking none

Specifying the FTP authentication style

To configure the FTP server to use UNIX, Windows, or both authentication styles, you can set the ftpd.auth_style option to unix, ntlm, or mixed, respectively. By default, this option is mixed.

About this task

When you specify the UNIX authentication style, the FTP server authenticates users using the /etc/passwd file or Network Information Service (NIS) server.

When you specify the NTLM authentication style, the FTP server authenticates users using the Windows domain controller. The NTLM authentication style is more secure than the UNIX authentication style because it uses encrypted user names and passwords.

When you specify the mixed authentication style, the FTP server uses the UNIX authentication style for users with names containing a backslash (\) character; it uses the NTLM authentication style for all other users.

Steps

1. Enter the following command:

```
options ftpd.auth_style style
style is unix, ntlm, or mixed.
```

2. If you specified ntlm in Step 1, specify the CIFS home directory in the /etc/cifs_homedir.cfg file and then enter the following command:

cifs homedir load

The home directory of a user is a combination of the path you specify in /etc/cifs_homedir.cfg and the user ID of the user. The path you specify in /etc/cifs_homedir.cfg is case-sensitive; however, the user ID is not case-sensitive.

Example

For example, if the path is \home and the user name is JOHN, the home directory for the user is \home\john.

After you finish

If you set the ftpd.auth_style option to unix and you previously enabled NIS (that is, if the nis.enable option is on), you must add an appropriate passwd entry to the /etc/nsswitch file.

• To authenticate users using the /etc/passwd file only, add the following entry:

passwd: files

• To authenticate users using NIS only, add the following entry:

passwd: nis

• To authenticate users using both the /etc/passwd file and NIS, add the following entry:

passwd: files nis

Limitations of the NTLM authentication style

The NTLM authentication style has some limitations.

These limitations include the following:

- NTLMv2 relies on domain controller-based services that do not exist on the storage system. For
 this reason, only NTLMv1 and earlier can be used to connect to storage systems operating in
 workgroup mode.
- Workgroup storage system Windows clients that use NTLM authentication should have "LAN Manager authentication level" set to a level other than "NTLMv2 Only." Setting this option changes the registry value for "LMCompatibilitylevel" to 0, 1, or 2. These are the only NTLM settings supported by the storage system for workgroup environments.
- Although domain-based clients in an Active Directory environment can perform authentication
 using NTLMv2 (because requests are passed along from the storage system to the domain
 controller), no connection information for local storage system accounts is available to the
 domain controller. For this reason, local storage system accounts would fail authentication during
 attempts to connect to a storage system in such an environment.

Enabling or disabling the bypassing of FTP traverse checking

You can enable or disable the bypassing of FTP traverse checking by setting the ftpd.bypass_traverse_checking option to on or off, respectively. By default, this option is set to off.

About this task

If the ftpd.bypass_traverse_checking option is set to off, when a user attempts to access a file using FTP, Data ONTAP checks the traverse (execute) permission for all directories in the path to the file. If any of the intermediate directories does not have the "X" (traverse permission), Data ONTAP denies access to the file. If the ftpd.bypass_traverse_checking option is set to on, when a user attempts to access a file, Data ONTAP does not check the traverse permission for the intermediate directories when determining whether to grant or deny access to the file.

Step

1. Perform one of the following actions.

If you want the bypassing of FTP traverse checking to be	Then
Enabled	Enter the following command:
	options ftpd.bypass_traverse_checking on
Disabled	Enter the following command:
	options ftpd.bypass_traverse_checking off

Restricting FTP access

You can restrict FTP access by blocking FTP users and restricting FTP users to a specific directory (either their home directories or a default directory).

Next topics

Blocking specific FTP users on page 303

Restricting FTP users to a specific directory on page 304

Restricting FTP users to their home directories or a default directory on page 304

Blocking specific FTP users

To prevent specific FTP users from accessing the storage system, you can add them to the /etc/ftpusers file.

Steps

- 1. Access the /etc directory on the storage system's default volume (/vol/vol0 by default) from an NFS or CIFS client.
- 2. Open the /etc/ftpusers file in a text editor. (If the file does not exist, create it.)
- 3. Add the user names of the users (one name per line) to whom you want to deny access.

For NTLM authentication, you must specify user names using one of the following formats:

- Domain\username
- Username@domain

Note: In the preceding formats, you must specify the exact name of the domain; otherwise, the FTP server will not deny access to the user. For example, if the name of a domain includes a ".com" suffix, you must include that suffix.

4. Save the /etc/ftpusers file.

Restricting FTP users to a specific directory

To restrict FTP users to a specific directory, you can set the ftpd.dir.restriction option to on; otherwise, to let FTP users access the entire storage system, you can set the ftpd.dir.restriction option to off. By default, this option is on.

Step

1. Perform one of the following actions.

If you want to	Then
Restrict FTP users to their home directories or a default	Enter the following command:
directory	options ftpd.dir.restriction on
Let FTP users access the entire storage system	Enter the following command:
	options ftpd.dir.restriction off

If you set the ftpd.dir.restriction option to on, you can use the ftpd.dir.override option to specify whether FTP users can access their home directories or a default directory.

Restricting FTP users to their home directories or a default directory

To restrict FTP users to a default directory, you can set the ftpd.dir.override option. Otherwise, to restrict FTP users to their home directories, you can clear the ftpd.dir.override option. By default, this option is cleared.

Before you set the ftpd.dir.override option, you must set the ftp.dir.restrictions option to on.

Step

1. Perform one of the following actions:

If you want to restrict FTP users to	Then	
Their home directories	Enter the following command:	
	options ftpd.dir.override ""	
A default directory	Enter the following command: options ftpd.dir.override directory	
	directory is the name of the default directory to which you want to restrict FTP users.	

Make sure the FTP users have read access to the directory you created in Step 1. For more information, see the *Data ONTAP Storage Management Guide*.

Managing FTP log files

You can manage FTP log files by viewing FTP log files, specifying the maximum number of FTP log files, and specifying the maximum size of the current FTP log files.

Next topics

How the FTP server manages its log files on page 305

The /etc/log/ftp.xfer log file format on page 306

The /etc/log/ftp.cmd log file format on page 306

Viewing an FTP log file on page 306

Specifying the maximum number of FTP log files on page 307

Specifying the maximum size of the current FTP log files on page 307

How the FTP server manages its log files

Data ONTAP logs all FTP server requests in the /etc/log/ftp.cmd file and all file transfers in the /etc/log/ftp.xfer file.

Data ONTAP writes data to an FTP log file (either the /etc/log/ftp.cmd or /etc/log/ftp.xfer file) until the FTP log file reaches its maximum size. Then Data ONTAP performs the following tasks:

- 1. If the total number of FTP log files is equal to the maximum number of FTP log files, it deletes the oldest FTP log file.
- 2. It increments the suffixes of the old FTP log files.
- 3. It adds the .1 suffix to the current FTP log file, thereby making it an old FTP log file.
- 4. It creates a new FTP log file.

Example

Assuming that the maximum number of log files is 6, when the /etc/log/ftp.xfer log file reaches its maximum size, Data ONTAP performs the following tasks:

- 1. It deletes the /etc/log/ftp.xfer.5 file, if the file exists.
- 2. It renames /etc/log/ftp.xfer.4 to /etc/log/ftp.xfer.5, /etc/log/ftp.xfer. 3 to /etc/log/ftp.xfer.4, and so on.
- 3. It renames /etc/log/ftp.xfer to /etc/log/ftp.xfer.1.
- **4.** It creates a new /etc/log/ftp.xfer log file.

The /etc/log/ftp.xfer log file format

The /etc/log/ftp.xfer file contains information on all files that the FTP server transfers.

The following table describes the fields in the /etc/log/ftp.xfer file.

Field	Description
timestamp	Timestamp of the log record
xferTime	Duration, in seconds, of the file transfer
clientIP	IP address of the FTP client
xferCount	Byte count of transferred file
filename	File name of the transferred file
xferType	Can be "a" (ascii), "e" (ebcdic), or "b" (binary)
xferDirection	Can be "o" (outbound) or "i" (inbound)
accessType	Can be "a" (anonymous), "r" (real user), or "g" (guest)

The /etc/log/ftp.cmd log file format

The /etc/log/ftp.cmd file contains information on all commands that the FTP server receives.

The following table describes the fields in the /etc/log/ftp.cmd file.

Field	Description
timestamp	Timestamp of the log record
serialNo	Serial number of the FTP connection
command	FTP command

Viewing an FTP log file

To view an FTP log file, you can open it in a text editor or viewer.

The FTP server maintains two log files:

- The /etc/log/ftp.cmd file contains information on all commands that the FTP server receives.
- The /etc/log/ftp.xfer file contains information on all files that the FTP server transfers.

Steps

- 1. Access the /etc/log directory on the storage system's default volume (/vol/vol0 by default) from an NFS or CIFS client.
- **2.** Open the log file in a text editor or viewer.

Specifying the maximum number of FTP log files

You can set the ftpd.log.nfiles option to specify the maximum number of FTP log files. By default, the maximum number of FTP log files is 6.

Step

1. Enter the following command:

```
options ftpd.log.nfiles n
```

n is the maximum number of log files. For more information, see the na options(1) man page.

Specifying the maximum size of the current FTP log files

You can set the ftpd.log.filesize option to specify the maximum size of the current FTP log files (the /etc/log/ftp.cmd and /etc/log/ftp.xfer log files). By default, the maximum size of the current FTP log files is 512 KB.

Step

1. Enter the following command:

```
options ftpd.log.filesize filesize
```

filesize is an integer followed by K or k (for KB) or G or g (for GB). For more information, see the na options(1) man page.

Example

The following command sets the maximum size of the current FTP log files to 1 GB:

```
options ftpd.log.filesize 1G
```

Viewing SNMP traps that the FTP server generates

To view SNMP traps that the FTP server generates, you can start and configure SNMP on the storage system and view the SNMP traps on a UNIX client.

Next topics

SNMP traps that the FTP server generates on page 308

Starting and configuring SNMP on the storage system on page 308 Viewing SNMP traps on a UNIX client on page 308

SNMP traps that the FTP server generates

The FTP server generates several SNMP traps.

The FTP server generates SNMP traps when the following events occur:

- Concurrent connections reach the ftpd.max_connections_threshold value.
- Concurrent connections reach the ftpd.max_connections value.
- The FTP daemon process stops due to an error.

For more information about SNMP, see the Data ONTAP 7-Mode Network Management Guide.

Starting and configuring SNMP on the storage system

To start SNMP on the storage system, you can use the snmp command.

Steps

1. Enter the following command:

```
snmp init 1
```

2. Enter the following command:

```
snmp traphost add hostname
```

host name is the host name of the UNIX client that will receive SNMP traps that the FTP server generates.

You must enable SNMP traps on the UNIX client that you specified in Step 2.

Viewing SNMP traps on a UNIX client

To view SNMP traps on a UNIX client, you can enter the snmptrapd -P command.

Before you can view SNMP traps on a UNIX client, you must start and configure SNMP on the storage system.

Step

1. Enter the following command:

```
snmptrapd -P
```

Viewing FTP statistics

To view FTP statistics, you can enter the ftp stat command.

Step

1. Enter the following command:

```
ftp stat -p native
```

You an also use this command to view SFTP-only, explicit-FTPS-only, implicit-FTPS-only, IPv4-only, or IPv6-only statistics. For more information, see the na_ftp(1) man page.

Result

The ftp stat command displays the following statistics:

- Current number of FTP connections
- Highest number of simultaneous FTP connections
- Total number of FTP connections since FTP statistics were reset

Resetting FTP statistics

To reset FTP statistics, you can use the ftp stat -z command.

Step

1. Enter the following command:

```
ftp stat -z
```

Specifying the maximum number of FTP connections

To specify the maximum number of FTP connections that the FTP server allows, you can use the ftpd.max_connections option. By default, the maximum number of FTP connections is 500.

Step

1. Enter the following command:

```
options ftpd.max connections n
```

n is the maximum number of FTP connections that the FTP server allows. If you set the ftpd.max_connections option to a value that is less than the current number of FTP connections, the FTP server refuses new connections until the number falls below the new maximum. The FTP server does not interrupt existing FTP connections.

In a HA configuration, the maximum number of FTP connections doubles automatically when the storage system is in takeover mode.

Specifying the maximum number of TFTP connections

To specify the maximum number of TFTP connections that the TFTP server allows, you can use the tftpd.max_connections option. The default number of TFTP connections is 8. The maximum number of connections supported is 32.

Step

1. Enter the following command:

```
options tftpd.max_connections n
```

n is the maximum number of TFTP connections that the TFTP server allows. If you set the tftpd.max_connections option to a value that is less than the current number of TFTP connections, the TFTP server refuses new connections until the number falls below the new maximum. The TFTP server does not interrupt existing TFTP connections.

In a HA configuration, the maximum number of TFTP connections doubles automatically when the storage system is in takeover mode.

Setting the FTP connection threshold

To specify how close the number of FTP connections must come to the maximum number of FTP connections before the FTP server adds an entry to the system log and (optionally) triggers an SNMP trap, you can set the ftpd.max_connections_threshold option. By default, this option is 0 (off).

Step

1. Enter the following command:

```
options ftpd.max_connections_threshold n
```

n is the percentage (0 through 99) of the value of ftpd.max_connections.

Specifying the TCP window size for FTP operations

To specify the TCP window size for FTP operations, you can use the ftpd.tcp_window_size option. By default, the TCP window size for FTP operations is 28,960.

Before you begin

Change the TCP window size for FTP operations only when your network configuration requires it. A change can strongly impact FTP performance.

Step

1. Enter the following command:

```
options ftpd.tcp_window_size n
```

n is the new TCP window size (the number of bytes the FTP server is willing to take from the FTP client at one time) for FTP operations.

Specifying the FTP idle timeout

You can set the ftpd.idle_timeout option to specify the FTP idle timeout value. This is the amount of time an FTP connection can be idle before the FTP server terminates it. By default, the FTP idle timeout value is 900 seconds.

Step

1. Enter the following command:

```
options ftpd.idle_timeout n s | m | h
```

n is the new timeout value. Append the letter s, m, or h to specify whether n represents seconds, minutes, or hours, respectively.

Managing anonymous FTP access

You can manage anonymous FTP access by enabling or disabling anonymous FTP access and specifying the home directory and user name for anonymous users.

Next topics

Enabling or disabling anonymous FTP access on page 311

Specifying the user name for anonymous FTP users on page 312

Specifying the home directory for anonymous FTP users on page 312

Enabling or disabling anonymous FTP access

To enable or disable anonymous FTP access, you can set the ftpd.anonymous.enable option to on or off, respectively. By default, this option is off.

Step

1. Perform one of the following actions.

If you want anonymous FTP access to be	Then
Enabled	Enter the following command:
	options ftpd.anonymous.enable on
Disabled	Enter the following command:
	options ftpd.anonymous.enable off

If you enable anonymous FTP access, you must perform the following tasks:

- Specify the user name for anonymous FTP users.
- Specify the home directory for anonymous FTP users.

Specifying the user name for anonymous FTP users

To specify the user name for anonymous FTP users, you can set the ftpd.anonymous.name option. By default, the user name for anonymous FTP users is "anonymous."

If the FTP authentication style is unix, the user name that you specify with this option overrides the user name that you specified for the FTP user in the /etc/passwd file.

Step

1. Enter the following command:

```
options ftpd.anonymous.name username
```

username is the name of the anonymous user.

Specifying the home directory for anonymous FTP users

To specify the home directory for anonymous FTP users (that is, the only directory to which anonymous FTP users have access), you can use the ftpd.anonymous.home_dir option.

If the FTP authentication style is unix, the home directory that you specify with this option overrides the home directory that you specified for the ftp user in the /etc/passwd file or NIS.

Steps

- 1. Create the home directory for anonymous FTP users.
- 2. Enter the following command:

```
options ftpd.anonymous.home dir homedir
```

homedir is the name of the home directory for anonymous FTP users.

Make sure anonymous FTP users have read access to the directory you created in Step 1. For more information, see the *Data ONTAP 7-Mode Storage Management Guide*.

Note: When the FTP server authenticates an anonymous FTP user with the NTLM authentication style, the FTP user has the same access privileges as the null user.

File access using HTTP

To let HTTP clients (web browsers) access the files on your storage system, you can enable and configure Data ONTAP's built-in HyperText Transfer Protocol (HTTP) server. Alternatively, you can purchase and connect a third-party HTTP server to your storage system.

Next topics

Managing Data ONTAP's built-in HTTP server on page 313

Purchasing and connecting a third-party HTTP server to your storage system on page 332

Managing Data ONTAP's built-in HTTP server

Managing Data ONTAP's built-in HTTP server involves several tasks.

Next topics

Enabling or disabling Data ONTAP's built-in HTTP server on page 313

Enabling or disabling the bypassing of HTTP traverse checking on page 314

Specifying the root directory for Data ONTAP's built-in HTTP server on page 315

Specifying the maximum size of the log file for Data ONTAP's built-in HTTP server on page 315

Testing Data ONTAP's built-in HTTP server on page 315

Specifying how Data ONTAP's built-in HTTP server maps MIME content types to file name extensions on page 316

Specifying how Data ONTAP's built-in HTTP server translates HTTP requests on page 317

Configuring MIME Content-Type values on page 320

Maintaining security for Data ONTAP's built-in HTTP server on page 321

Displaying statistics for Data ONTAP's built-in HTTP server on page 327

Resetting statistics for Data ONTAP's built-in HTTP server on page 330

Viewing connection information for Data ONTAP's built-in HTTP server on page 330

Enabling or disabling Data ONTAP's built-in HTTP server

To enable or disable Data ONTAP's built-in HTTP server, you can set the httpd.enable option to on or off, respectively. By default, this option is off.

Step

1. Perform one of the following actions.

If you want HTTP to be	Then
Enabled	Enter the following command:
	options httpd.enable on
Disabled	Enter the following command:
	options httpd.enable off

After you finish

If you purchased an HTTP license, web browsers can access all of the files in the HTTP server's root directory; otherwise, web browsers can access the man pages and FilerView only.

Enabling or disabling the bypassing of HTTP traverse checking

You can enable or disable the bypassing of HTTP traverse checking by setting the httpd.bypass_traverse_checking option to on or off, respectively. By default, this option is set to off.

About this task

If the httpd.bypass_traverse_checking option is set to off, when a user attempts to access a file using the HTTP protocol, Data ONTAP checks the traverse (execute) permission for all directories in the path to the file. If any of the intermediate directories does not have the "X" (traverse permission), Data ONTAP denies access to the file. If the http.bypass_traverse_checking option is set to on, when a user attempts to access a file, Data ONTAP does not check the traverse permission for the intermediate directories when determining whether to grant or deny access to the file.

Step

1. Perform one of the following actions.

If you want the bypassing of HTTP traverse checking to be	Then
Enabled	Enter the following command:
	options httpd.bypass_traverse_checking on
Disabled	Enter the following command:
	options httpd.bypass_traverse_checking off

Specifying the root directory for Data ONTAP's built-in HTTP server

You can set the httpd.rootdir option to specify the root directory for Data ONTAP's built-in HTTP server. This is the directory that contains all of the files that an HTTP client can access.

Step

1. Enter the following command:

```
options httpd.rootdir directory
```

directory is the full path to the HTTP server's root directory.

Example

The following command sets the HTTP server's root directory to /vol0/home/users/pages:

options httpd.rootdir /vol0/home/users/pages

Specifying the maximum size of the log file for Data ONTAP's built-in HTTP server

You can set the ftpd.log.filesize option to specify the maximum size of the log file for Data ONTAP's built-in HTTP server. This option specifies the maximum log file size of the HTTP and FTP log files in the /etc/log directory, including the ftp.cmd, ftp.xfer, and httpd.log files. By default, this option is set to 512 kilobytes.

Step

1. Enter the following command:

```
options ftpd.log.filesize bytes
```

bytes is the new maximum size of the HTTP server's log file.

Testing Data ONTAP's built-in HTTP server

To confirm that Data ONTAP's built-in HTTP server is working, you can copy an HTML file into the HTTP server's root directory and then access the file from a web browser. You can also access the HTTP server's root directory (or a subdirectory of the HTTP server's root directory) directly from a web browser.

Steps

1. Copy an HTML file into the HTTP server's root directory.

- 2. From a web browser running on a separate system, access the file you copied into the HTTP server's root directory.
 - The URL is http://www.hostname.com/myfile.html, where hostname is the host name of the storage system and myfile.html is the name of the file you copied into the HTTP server's root directory. You should see the contents of the file.
- **3.** Optionally access the HTTP server's root directory (or a subdirectory of the HTTP server's root directory) directly from a web browser running on a separate client.

The URL is http://www.hostname.com, where hostname is the host name of the storage system.

The HTTP server looks for the following files in the following order in the directory that you specify:

- a. index.html
- b. default.htm
- c. index.htm
- d. default.html

If none of these files exists, the storage system automatically generates an HTML version of the directory listing for that directory (if the httpd.autoindex.enable option is on) or responds with the "403" (forbidden) error code (if the httpd.autoindex.enable option is off). For more information about the httpd.autoindex.enable option, see the na_options(1) man page.

Specifying how Data ONTAP's built-in HTTP server maps MIME content types to file name extensions

You can create or edit the /etc/httpd.mimetypes file to specify how Data ONTAP's built-in HTTP server maps Multipurpose Internet Mail Extensions (MIME) content types to file name extensions. If the /etc/httpd.mimetypes file does not exist, the HTTP server uses the mappings in the /etc/httpd.mimetypes.sample file. For more information, see the na_httpd.mimetypes(5) man page.

About this task

Web browsers interpret files according to their MIME content type. For example, if a file's MIME content type is an image type, web browsers render the file as an image using a graphics program.

Note: For more information about MIME, see RFC 1521.

Step

1. Create entries in the /etc/httpd.mimetypes file with the desired mappings.

Entries use the following format:

```
# An optional comment.
```

suffixContent-Type

The text after the pound character (#) is a comment. The file name suffix is not case-sensitive.

suffix is the file name extension to which you want to map a MIME content type.

Content-Type is the MIME Content-Type type. The first field of the MIME Content-Type describes the general type of data contained in the file; the second field is the data subtype, which shows the specific format in which the data is stored.

Example

The following entries to the /etc/httpd.mimetypes file map the /image/pict MIME content type to files with .pct and .pict file name extensions:

```
# My clients' browsers can now use
# PICT graphics files.
pct image/pict
pict image/pict
```

Now, if it is configured properly, web browsers will start a graphics program as a helper application, allowing users to view .pct and .pict files as graphics files.

Specifying how Data ONTAP's built-in HTTP server translates HTTP requests

To specify how Data ONTAP's built-in HTTP server responds to HTTP requests, you can add map, redirect, pass, or fail translation rules to the /etc/httpd.translations configuration file.

Next topics

How Data ONTAP's built-in HTTP server translations file works on page 317

Adding a map rule on page 318

Adding a redirect rule on page 318

Adding a pass rule on page 319

Adding a fail rule on page 319

How Data ONTAP's built-in HTTP server translations file works

Data ONTAP's built-in HTTP server processes the rules in the /etc/httpd.translations file in the order they are listed, applying a rule if the URL matches the template. After the first successful match, the HTTP server stops processing the remaining rules.

You can use an asterisk (*) as a wildcard character in the template and result fields of map, redirect, and pass rules that you add to the /etc/httpd.translations file.

In the template field, the wildcard character matches zero or more characters, including the slash (/) character.

In the result field, the wildcard character represents the text expanded from the match in the template field. You should include the wildcard character in the result field only if you use a wildcard in the template field.

If you use multiple wildcard characters, the first one in the result field corresponds to the first one in the template field, the second one in the result field corresponds to the second one in the template field, and so on.

Adding a map rule

You can add a map rule to the /etc/httpd.translations file to specify that the HTTP server should map a URL to another location.

Steps

- 1. Open the /etc/httpd.translations file in a text editor.
- **2.** Add the following rule:

map template result

template is the component of a URL that you want to map to another location (for example, / image-bin/graphics/).

result specifies the new location.

3. Save the file.

Example

The following map rule in the /etc/httpd.translations file maps a URL containing an / image-bin component to the /usr/local/http/images directory:

map /image-bin/* /usr/local/http/images/*

Adding a redirect rule

You can add a redirect rule to the /etc/httpd.translations file to specify that the HTTP server should redirect a URL containing a specific component to a new location.

Steps

- 1. Open the /etc/httpd.translations file in a text editor.
- **2.** Add the following entry:

redirect template result

template is a component of a URL to redirect.

result specifies the new location.

Note: You must specify the result field for the redirect rule as a complete URL beginning with http:// and the host name.

3. Save the file.

Example

The following entry in the /etc/httpd.translations file redirects Common Gateway Interface (CGI) requests to an HTTP server named cgi-host:

redirect /cgi-bin/* http://cgi-host/*

Adding a pass rule

You can add a pass entry to the /etc/httpd.translations file to specify that the HTTP server should process a rule as is, disregarding other rules.

Steps

- 1. Open the /etc/httpd.translations file in a text editor.
- **2.** Add the following entry:

```
pass template [result]
```

template is a component of a URL

result is an optional location to which the HTTP server redirects the URL.

3. Save the file

Example

The following entry in the /etc/httpd.translations file processes a request for a URL containing /image-bin as is:

pass /image-bin/*

Adding a fail rule

You can add a fail rule to the /etc/httpd.translations file to specify that the HTTP server should deny access to a URL containing a specific component.

Steps

- 1. Open the /etc/httpd.translations file in a text editor.
- **2.** Add the following entry:

fail template

template is the URL component to which the HTTP server should deny access.

3. Save the file.

Example

The following entry in the /etc/httpd.translations file denies access to the /usr/ forbidden directory:

fail /usr/forbidden/*

Configuring MIME Content-Type values

You can configure the storage system to send the appropriate MIME Content-Type value in each response to a get request from a client by mapping the file name suffix, for example, gif, html, or .mpg, according to information in the /etc/httpd.mimetypes file.

About this task

The MIME (Multipurpose Internet Mail Extensions) Content-Type value of a file tells a browser on a client how to interpret the file. For example, if the MIME Content-Type value shows that a file is an image file, and the client is configured properly, the browser can render the image by using a graphics program.

For more information about MIME, see RFC 1521.

Step

1. Edit the entries in the /etc/httpd.mimetypes file.

Entries are in the following format:

```
# An optional comment.
suffixContent-Type
```

Lines preceded by the # sign are comments. The file name suffix is not case-sensitive.

Example

The following are sample entries:

```
# My clients' browsers can now use
# PICT graphics files.
pct
          image/pict
pict
          image/pict
```

In the sample entries, files whose names end with .pct or .pict are mapped to the MIME Content-Type value of image/pict. The first field in the Content-Type value describes the general type of data contained in the file; the second field is the data subtype, which shows the specific format in which the data is stored. If the browser on the client is configured to start a

graphics program as a helper application, the user can view a file named file.pict as a graphics file on the client.

Maintaining security for Data ONTAP's built-in HTTP server

You can maintain security for Data ONTAP's built-in HTTP server by using the HTTP options to restrict access, using an HTTP virtual firewall, protecting Web pages with user authentication, disabling support for the HTTP TRACE method, and specifying how long Data ONTAP keeps idle HTTP connections open.

Next topics

Using HTTP options to restrict access on page 321
Using an HTTP virtual firewall on page 322
Protecting Web pages on page 322
Configuring HTTP virtual hosting on page 327

Using HTTP options to restrict access

The HTTP options restrict access to HTTP services from specified hosts and from specified interfaces.

The following options to restrict HTTP access are available:

- httpd.access—Restricts access to the HTTP services.
- httpd.admin.access—Restricts access to storage system administration via HTTP (FilerView).

You can restrict access on one or more hosts or on a network interface. For more information about these options, see the options(1) man page.

Note: If the httpd.admin.access option is set, the trusted.hosts option is ignored for HTTP administration.

- httpd.method.trace.enable—Enables or disables support for the HTTP TRACE method. By default, this option is off. The HTTP TRACE method allows an HTTP client to see what is being received at the other end of the request chain, for debugging purposes. (For more information, see RFC 2616.) However, attackers can leverage the HTTP TRACE method in conjunction with cross-domain browser vulnerabilities to read sensitive header information from third-party domains. For more information, search for Vulnerability Note 867593 in the United States Computer Emergency Readiness Team Vulnerability Notes Database, which is located at http://www.cert.org/.
- httpd.admin.top-page.authentication—Specifies whether the top-level FilerView administration Web page prompts for user authentication.

 By default, this option is on.

Examples

In the following example, only host Host1 is allowed access through interface e3 to the HTTPD services on storage system Filer1:

Filer1> options httpd.access host=Host1 AND if=e3

In the following example, host Host1 is denied FilerView access to the storage system Filer1:

Filer1> options httpd.admin.access host!=Host1

Using an HTTP virtual firewall

An HTTP virtual firewall provides security on your storage system by restricting HTTP access through the subnet interface over which the HTTP requests arrive.

You restrict HTTP access by marking the subnet interface as untrusted. An untrusted subnet interface provides only read-only HTTP access to the storage system. By default, a subnet interface is trusted.

Mark a subnet interface as untrusted if it meets all the following conditions:

- You know you are going to service HTTP requests over that interface.
- You do not want to allow requests through protocols other than HTTP.
- You want to restrict access to the storage system through that interface to read-only access.

Step

1. Enter the following command:

```
ifconfig interface_name [trusted | untrusted]
```

interface_name is the specific interface to set as trusted or untrusted.

Use trusted to allow full HTTP access or untrusted to restrict HTTP access.

Example

The following command marks the f0 interface as untrusted:

ifconfig f0 untrusted

Protecting Web pages

You can restrict HTTP access, and thereby protect Web pages, by preventing unauthorized users from accessing Web pages. In this way, only specified users or groups can access directories containing the Web pages.

Data ONTAP provides the following two methods of authentication for HTTP access:

- Basic
- NTLM

You specify the method of authentication to use in the /etc/httpd.access file. Both authentication methods can coexist on a storage system, but you can specify only one authentication method per directory in the HTTP subtree.

Next topics

Basic authentication on page 323

NTLM authentication on page 323

Editing the /etc/httpd.access file on page 324

Creating and editing the httpd.passwd file on page 326

Creating and editing the httpd.group file on page 326

Basic authentication

You use the following three configuration files to set up authentication for the HTTP service: /etc/httpd.access, /etc/httpd.passwd, and /etc/httpd.group.

The /etc/httpd.access file contains the method of authentication, the directories for which you want to restrict access, and the list of users and groups authorized to access these directories.

The /etc/httpd.passwd file contains the encrypted form of the password that a user, specified in the /etc/httpd.access file, uses to gain access to the directories specified in the /etc/httpd.access file. The /etc/httpd.passwd file uses the same format that the /etc/passwd file uses

The /etc/httpd.group file contains group and user IDs of the members of each group who are authorized to access the directories specified in the /etc/httpd.access file. The /etc/httpd.group file uses the same format that the /etc/group file uses.

NTLM authentication

You can use Windows Domain Authentication instead of basic authentication for a directory. Data ONTAP uses the Domain Controller (DC) to authenticate users accessing the directories containing the Web pages.

You must specify the directories in the /etc/httpd.access file for which you want the domain controller to authenticate users.

A user accessing a directory for which NTLM authentication has been set up must specify a domain with the user name. If a domain is not specified, the domain of the storage system is assumed as a default. The users can specify the domain in either of the following formats:

- user name@domain name
- domain_name\user_name

Note: You must have CIFS running on your storage system to use the NTLM authentication for HTTP access.

You do not need to maintain information in the /etc/http.passwd and /etc/http.group files, thus centralizing user administration. And, if you use Internet Explorer (IE) as your browser, NTLM

authentication is a more secure method of authenticating users because user name and password are not transmitted in plain text.

Note: Netscape browsers send user names and passwords in plain text, providing no security advantage for NTLM.

Editing the /etc/httpd.access file

The /etc/httpd.access file contains options that govern the access to and appearance of each directory.

The storage system supports the following options:

- Directory—Specifies the directory you want to protect. The directory option encloses all other options.
- AuthName—Specifies an alias for the directory that appears instead of the directory name in the browser password dialog box when a user tries to access the directory.
- require user—Specifies the users who can access the directory.
- require group—Specifies the groups that can access the directory.

Note: The options require user and require group are only required for basic authentication.

Option information for each directory in the /etc/httpd.access file is given in the following format:

```
<Directory directory>
option ...
```

directory is the specific directory tree name for which you want to enable authorized access.

Steps

- 1. Open the /etc/httpd.access file for editing.
- 2. Specify the directory tree you want to protect in the following line:

```
<Directory directory>
```

directory specifies the directory tree name you want protected.

3. If you are configuring basic authentication using /etc/httpd.passwd and /etc/httpd.group files, specify the alias for the directory in the following line:

AuthName title_phrase

title_phrase is any string you specify that appears instead of the directory name in the browser password dialog box when a user tries to access the directory. This name can contain spaces. For example:

AuthName Secured Area

4. Otherwise, if you are configuring NTLM authentication, specify the following, exactly as shown:

```
AuthName Windows(tm) Authentication
```

5. Specify the users who can access the directory in the following line:

```
require user user_id[, user_id, ...]
```

user_id specifies the user ID for each user who should have access to the directory.

6. Specify the groups that can access the directory in the following line:

```
require group group_id[, group_id, ...
```

group_id specifies the group ID for each group that should have access to the directory.

7. End the option or list of options for the specified directory using the following line:

</Directory>

8. Save the file.

Example

The following example shows the use of multiple Directory options in a /etc/ httpd.access file to specify either Basic or NTLM authentication on a storage system:

```
<Directory /vol/vol0/web1>
AuthName Windows(tm) Authentication
</Directory>
<Directory /vol/vol0/web2>
AuthName Web2 directory
require user test1
require group testg1
</Directory>
<Directory /vol/vol0/web3>
AuthName Windows(tm) Authentication
</Directory>
<Directory /vol/vol0/web4>
AuthName Web4 directory
require user test2
</Directory>
```

In this example, web1 and web3 use NTLM authentication and web2 and web4 use basic authentication. Access to web2 is limited to user test1 and members of group testg1, and access to web4 is limited to user test2.

Creating and editing the httpd.passwd file

The /etc/httpd.passwd file contains encrypted passwords of users listed in the /etc/httpd.access file. This file is only required if you are using basic authentication to authenticate users.

If you have an HTTP server that uses a user name and password method to authenticate users, you can copy user IDs and encrypted passwords from it. You must edit the /etc/httpd.passwd file to remove users that you do not want to have access.

If an HTTP server is not available, you can copy an existing /etc/passwd file from a UNIX server and save it on the storage system as the /etc/httpd.passwd file.

Steps

- 1. Open the /etc/httpd.passwd file.
- 2. Remove the user IDs and encrypted passwords of users that you do not want to have access to the directory you specified in the /etc/httpd.access file.
- 3. Save the edits.

Creating and editing the httpd.group file

The /etc/httpd.group file contains the group names and the users belonging to those groups. This file is only required if you are using basic authentication to authenticate users.

If you have an HTTP server that authenticates groups of users, you can copy the group names and user IDs from it. You must edit the /etc/httpd.group file to remove groups that you do not want to have access.

If an HTTP server is not available, you can copy an existing /etc/group file from a UNIX server and save it on the storage system as the /etc/httpd.group file.

Steps

1. In the /etc/httpd.group file, edit the following line:

```
group_id:user_id [, user_id, ...]
```

The lists are copied in from a server that has a similar list.

2. Add or remove groups and users. Group and user information is listed in the following format:

```
group_id: user_id[user_id ...]
```

group_id is the group name.

user_id is the name of each user who belongs to the group.

Save the file.

Configuring HTTP virtual hosting

In Data ONTAP 7.3 and later releases, you can configure HTTP virtual hosting by adding alias IP addresses to a physical interface. Data ONTAP no longer uses vh interfaces for this purpose.

Steps

1. Enable HTTP by entering the following command:

```
options httpd.enable on
```

2. Add one or more alias IP addresses to the physical interface that you will be using for HTTP virtual hosting by entering the following command:

```
ifconfig physical_interface_name [IP_address_family] alias IP_address
Example
```

To add the 192.225.37.102 alias IP address (an IPv6 address) to the e0a physical interface, enter the following command:

```
ifconfig e0a alias 192.225.37.102
```

For more information, see the na ifconfig(1) man page.

3. Add entries to the /etc/httpd.hostprefixes file that map the alias IP addresses you specified in Step 2 to one or more subdirectories of the HTTP root directory.

To determine the HTTP root directory, check the value of the httpd.rootdir option.

Example

To map the fd20:81be:b255:4136::a48:8a5f alias IP address to the /httpdir1 subdirectory, add the following entry to the /etc/httpd.hostprefixes file:

```
/httpdir1 192.225.37.102
```

4. Test your HTTP virtual hosting configuration by using an HTTP client to connect to the alias IP addresses you created and mapped in Steps 2 and 3, respectively.

Displaying statistics for Data ONTAP's built-in HTTP server

You can use the httpstat command to display five types of statistics about operations of Data ONTAP's built-in HTTP server.

About this task

The five statistics types include the following:

- Request
- Detailed
- Error
- Service

• Timeout

Step

1. Enter the following command:

httpstat [-dersta]

- -d displays detailed statistics.
- -e displays error statistics.
- -r displays request statistics.
- -s displays service statistics.
- -t displays timeout statistics.
- -a displays all HTTP statistics.

If you use no arguments, https://displays HTTP request statistics.

For detailed information about the httpstat command, see the httpstat(1) man page.

Next topics

Request statistics on page 328

Detailed statistics on page 329

Error statistics on page 329

Service statistics on page 329

Timeout statistics on page 330

Request statistics

If you specify request statistics, Data ONTAP displays the following statistics.

Label of statistic	Description	
Accept	Number of new connections accepted by the storage system	
Reuse	Number of new requests received on existing connections	
Response	Number of responses sent	
InBytes	Number of bytes received for all incoming requests	
OutBytes	Number of bytes sent, including all HTTP headers, but not including data generate by servlets	

If you specify detailed statistics, Data ONTAP displays the following statistics.

Label of statistic	Description	
Get	Number of requests for files received	
Head	Number of requests for file information received	
Redirect	Number of requests redirected to another file	
NotMod	Number of times clients (browsers) are told that requested files are not modified	
Post	Number of POST requests received	
Put	Number of PUT requests received	
Servlet	Number of servlet requests received	

Error statistics

If you specify error statistics, Data ONTAP displays the following statistics

Label of statistic	Description	
Errors	Number of HTTP protocol error responses returned	
BadReq	Number of unrecognized requests received	
LogDiscard	Number of log entries discarded because the log was full	
UnAuth	Number of requests denied because they lacked authorization	
RevErr	Number of requests aborted because of errors on the input socket	

Service statistics

If you specify service statistics, Data ONTAP displays the following statistics.

Label of statistic	Description	
Open	Jumber of currently open connections	
Peak	Maximum number of connections ever achieved	
Waits	Current number of connections accepted, but waiting for a connection structure	

Timeout statistics

If you specify timeout statistics, Data ONTAP displays the following statistics.

Label of statistic	Description	
Pending	Number of connection structures reclaimed after the network connection was started, but before any data was sent to the storage system	
Active	Number of connection structures reclaimed after the network connection was started and partial request was sent, but before the complete request arrived	
Idle	Number of connections that were reclaimed after a complete request, but before the oper connection could receive another request	

Resetting statistics for Data ONTAP's built-in HTTP server

You can use the httpstat -z command to reset statistics for Data ONTAP's built-in HTTP server.

Step

1. Enter the following command:

httpstat -z[derta]

- -zd displays detailed statistics.
- -ze displays error statistics.
- -zr displays request statistics.
- -zt displays timeout statistics.
- -za displays all HTTP statistics except the service statistics.

Note: You cannot reset the service statistics

For detailed information about the httpstat command, see the httpstat(1) man page.

Viewing connection information for Data ONTAP's built-in HTTP server

You can view many types of information in the /etc/log/httpd.log file for each connection established by Data ONTAP's built-in HTTP server.

Steps

- 1. Access the /etc/log directory on the storage system default volume (/vol/vol0 by default) from an NFS or CIFS client.
- 2. Use a text viewer or text editor to open and view the httpd.log file.

3. Close the log file when you are finished viewing it.

Result

Data ONTAP displays the following types of information:

- · IP address of HTTP client
- Names of authorized users making requests. If the page is protected, Data ONTAP lists authorized names it gets from the /etc/httpd.passwd file. If the page is not protected, dashes appear instead of a name
- Time of connection Greenwich Mean Time (GMT), in dd/mm/yy:hh:mm:ss format
- Request line from connecting host, for example, get /my_company.html
- Status code returned by the server, as defined in the HTTP 1.0 specifications
- Total bytes sent in response by the storage system, not including the MIME header

Example

```
192.9.77.2 - - [26/Aug/2003:16:45:50] "GET /top.html" 200 1189
192.9.77.2 - - [26/Aug/2003:16:45:50] "GET /header.html" 200 531
192.7.15.6 - - [26/Aug/2003:16:45:51] "GET /logo.gif" 200 1763
198.9.200.2 - - [26/Aug/2003:16:45:57] "GET /task/top.html" 200 334
192.9.20.5 authuser [26/Aug/2003:16:45:57] "GET /task/head.html"
200 519
```

Changing the /etc/log/httpd.log file format

The default format of the /etc/log/httpd.log file shows the IP address of the HTTP clients and the HTTP path accessed, but not which virtual host is accessed. You can change the format of the /etc/log/httpd.log file so that it distinguishes HTTP messages by virtual hosts by setting the httpd.log.format option.

Step

1. Enter the following command:

```
options httpd.log.format alt1
```

To revert the setting for log format, change this option from alt1 to the default value, common.

Purchasing and connecting a third-party HTTP server to your storage system

You can work around limitations of the Data ONTAP built-in HTTP server by purchasing and connecting a third-party HTTP server to your storage system.

About this task

The Data ONTAP built-in HTTP server has the following limitations:

- No support for Secure HTTP (HTTPS)
- No support for more than one HTTP root directory
- No support for scripts (that is, the HTTP supports file serving only)
- Scalability and performance problems if there are a large number of file operations on a large number of small files

Steps

- **1.** Purchase a third-party HTTP server.
- 2. Connect the third-party HTTP server to your storage system using the NFS protocol. For more information, see the documentation that comes with your third-party HTTP server.

File access using WebDAV

To let users use WebDAV interoperable, collaborative applications, you can add the WebDAV Webbased Distributed Authoring and Versioning) protocol to your existing HTTP service. Alternatively, you can purchase and connect a third-party WebDAV server to your storage system.

Note: You can use the WebDAV protocol on your storage system as an extension of HTTP only if you purchased the license for HTTP. Future versions of Data ONTAP may require the use of a WebDAV license key in order to use WebDAV with HTTP.

Next topics

Understanding WebDAV on page 333

Managing Data ONTAP's built-in WebDAV server on page 334

Purchasing and connecting a third-party WebDAV server to your storage system on page 335

Understanding WebDAV

The WebDAV protocol defines the HTTP extensions that enable distributed Web authoring tools to be broadly interoperable, while supporting user needs. WebDAV allows you to create HTTP directories.

The WebDAV protocol provides support for remote software development teams though a widerange of collaborative applications. WebDAV leverages the success of HTTP and acts as a standard access layer for a wide range of storage repositories. HTTP gives read access, WebDAV gives write access.

Major features of this protocol include the following:

- Locking. Long-duration exclusive and shared write locks prevent two or more collaborators from
 writing to the same resource without first merging changes. To achieve robust Internet-scale
 collaboration, where network connections may be disconnected arbitrarily, and for scalability,
 since each open connection consumes server resources, the duration of DAV locks is independent
 of any individual network connection.
- Properties. XML properties provide storage for arbitrary metadata, such as a list of authors on Web resources. These properties can be efficiently set, deleted, and retrieved using the DAV protocol. DASL (DAV Searching and Locating) protocol provides searches of Web resources based on the values in XML properties.
- Namespace manipulation. Since resources sometimes need to be copied or moved as the Web
 evolves, DAV supports copy and move operations. Collections, similar to file system directories,
 can be created and listed.
- HTTP feature support. Data ONTAP WebDAV implementation supports your HTTP configuration settings, such as redirect rules, authentication, and access restrictions. To use WebDAV, you need to have HTTP service enabled and configured.

• CIFS feature support. Data ONTAP WebDAV implementation supports CIFS home directories when you have valid CIFS and HTTP licenses, and you have enabled WebDAV.

Managing Data ONTAP's built-in WebDAV server

Managing Data ONTAP's built-in WebDAV server includes tasks of enabling or disabling the WebDAV protocol and pointing a WebDAV client to a home directory.

Next topics

Enabling or disabling Data ONTAP's built-in WebDAV server on page 334 Pointing a WebDAV client to a home directory on page 335

Enabling or disabling Data ONTAP's built-in WebDAV server

To enable or disable Data ONTAP's built-in WebDAV server, you can set the webdav.enable option to on or off, respectively. By default, this option is off.

Before you begin

Before you can enable Data ONTAP's built-in WebDAV server, you must enable Data ONTAP's built-in HTTP server. Data ONTAP's built-in WebDAV server supports your HTTP configuration settings, such as redirect rules, authentication, and access restrictions.

Furthermore, Data ONTAP's built-in WebDAV server supports CIFS home directories when you have valid CIFS licenses and you have enabled and configured CIFS home directories.

Step

1. Perform one of the following actions.

If you want WebDAV to be	Then
Enabled	Enter the following command:
	options webdav.enable on
Disabled	Enter the following command:
	options webdav.enable off

Pointing a WebDAV client to a home directory

You can point a WebDAV client to a home directory by appending a tilde (~) character to the URL that you enter in the WebDAV client's navigation field.

Step

1. In the navigation (or default directory) field of your WebDAV client, enter a URL with the following syntax:

```
http://host[:port]/~
```

host is the host name or IP address for the storage system

port is the port through which you want to access the storage system. The tilde (\sim) character specifies the user's home directory.

Examples of valid WebDAV home directory URLs

http://eng_filer.lab.company.com/~

http://10.120.83.104:80/~

Purchasing and connecting a third-party WebDAV server to your storage system

You can work around limitations of the Data ONTAP built-in WebDAV server by purchasing and connecting a third-party WebDAV server to your storage system.

About this task

The Data ONTAP built-in WebDAV server has the following limitations:

- Supports values that contain two-byte Unicode characters only; Data ONTAP will not properly record larger Unicode characters.
- Supports the core WebDAV protocols only; Data ONTAP does not support the secondary WebDAV protocols.
- Does not support home directory features for virtual IP addresses. URLs that specify a virtual IP address as the host will not be resolved.

Steps

- 1. Purchase a third-party WebDAV server.
- Connect the third-party WebDAV server to your storage system via the NFS protocol.For more information, see the documentation that comes with your third-party WebDAV server.

CIFS resource limits by system memory

The CIFS resource limits by storage system model are upper limits based on system memory. However, these limits are theoretical. The practical limits will be lower and will vary according to system configuration in your environment.

Note: Do not use the figures in the following tables to size storage resources for your systems. If your storage system is not able to obtain sufficient resources in these categories, contact technical support.

Storage systems will use no more than 6 GB of system memory to assign maximum values for CIFS resources. For example, although a storage system with 32 GB of memory will have much better performance than one with 8 GB, they will both have the same limits on these CIFS resources. Computing limits for CIFS resources in this way ensures that system memory is available for scaling storage capacity and other system resources.

All vFiler units on a storage system draw on the same finite pool of CIFS resources. Therefore, the sum of these resources consumed by all vFiler units on a storage system cannot exceed that system's resource limits.

Next topics

Limits for the FAS60xx storage systems on page 337
Limits for the 30xx and 31xx storage systems on page 338
Limits for the FAS2040 storage system on page 339

Limits for the FAS60xx storage systems

The following table shows access limits for the FAS60xx series storage systems.

CIFS limits by storage system memory	16 GB FAS6030	32 GB FAS6040	32 GB FAS6070	64 GB FAS6080
Maximum number of connections	96,000	96,000	96,000	96,000
Maximum number of shares	192,000	192,000	192,000	192,000
Maximum number of share connections	384,000	384,000	384,000	384,000
Maximum number of open files	1,920,000	1,920,000	1,920,000	1,920,000

CIFS limits by storage system memory	16 GB FAS6030	32 GB FAS6040	32 GB FAS6070	64 GB FAS6080
Maximum number of locked files	2,116,608	2,116,608	2,116,608	2,116,608
Maximum number of locks	4,233,216	4,233,216	4,233,216	4,233,216

Limits for the 30xx and 31xx storage systems

The following table shows access limits for the 30xx and 31xx storage systems.

CIFS limits by storage system memory	4 GB FAS3040	8 GB FAS3070	8 GB FAS3140	16 GB FAS3160	32 GB FAS3170
Maximum number of connections	64,000	96,000	96,000	96,000	96,000
Maximum number of shares	128,000	192,000	192,000	192,000	192,000
Maximum number of share connections	256,000	384,000	384,000	384,000	384,000
Maximum number of open files	1,280,000	1,920,000	1,920,000	1,920,000	1,920,000
Maximum number of locked files	1,411,072	2,116,608	2,116,608	2,116,608	2,116,608
Maximum number of locks	2,822,144	4,233,216	4,233,216	4,233,216	4,233,216

Limits for the FAS2040 storage system

There are limits on the maximum number of connections, shares, share connections, open files, locked files, and locks for the storage system.

CIFS limits by storage system memory	4 GB FAS2040
Maximum number of connections	41,200
Maximum number of shares	82,400
Maximum number of share connections	164,800
Maximum number of open files	824,000
Maximum number of locked files	910,016
Maximum number of locks	1,820,032

Some Event Log and Audit group policies are applied differently by Data ONTAP than by Windows systems.

If Group Policy Object (GPO) support is enabled on your storage system, Data ONTAP processes and applies all relevant GPOs. Most of the relevant group policy settings are applied uniformly on storage systems running Data ONTAP and Windows systems.

However, two types of policy—Event Log and Audit (Local Policies)—are applied differently on storage systems because the underlying logging and auditing technologies are different. Event Log and Audit GPOs are applied to storage systems by mapping and setting corresponding Data ONTAP options. The effect of mapping these options is similar but not identical to Event Log and Audit policy settings.

The following tables show the Data ONTAP options that are set when the corresponding GPOs are applied. For more information about the options, see the options(1) man page.

Next topics

Event Log mapping values on page 341 Audit mapping values on page 342

Event Log mapping values

For each row in the following table, the right column shows the Data ONTAP options that are set when the Event Log policies (and settings and examples, if appropriate) in the left column are applied.

Policy name	Setting	Data ONTAP options
Maximum security log size	n/a	cifs.audit.logsize
Retention method for security log	Overwrite events by days (Example: 7 days)	cifs.audit.autosave.file.extension timestamp
		cifs.audit.autosave.file.limit 0
		cifs.audit.autosave.onsize.threshold 100
		cifs.audit.autosave.onsize.enable on
		cifs.audit.autosave.ontime.interval 7d
		cifs.audit.autosave.ontime.enable on
		cifs.audit.saveas /etc/log/adtlog.evt
		cifs.audit.enable on

Policy name	Setting	Data ONTAP options
Retention method for security log	Overwrite events as needed	cifs.audit.autosave.file.extension timestamp
		cifs.audit.autosave.file.limit 1
		cifs.audit.autosave.onsize.threshold 100
		cifs.audit.autosave.onsize.enable on
		cifs.audit.autosave.ontime.enable off
		cifs.audit.saveas /etc/log/adtlog.evt
		cifs.audit.enable on
Retention method for security log	Do not overwrite events (clear log manually)	cifs.audit.autosave.file.extension timestamp
		cifs.audit.autosave.file.limit 0
		cifs.audit.autosave.onsize.threshold 100
		cifs.audit.autosave.onsize.enable on
		cifs.audit.autosave.ontime.enable off
		cifs.audit.saveas /etc/log/adtlog.evt
		cifs.audit.enable on

Audit mapping values

For each row in the following table, the right column shows the Data ONTAP options that are set when the Audit policies (and settings and examples, if appropriate) in the left column are applied.

Policy name	Setting	Data ONTAP options
Audit account logon events Audit logon events	Both policies are defined but neither sets audit attempts.	cifs.audit.logon_events .enable off
Audit account logon events Audit logon events	Both policies are defined, and audit attempts are set to Success, Failure, or Success & Failur	cifs.audit.enable on cifs.audit.logon_events .enable on
Audit directory service access Audit object access	Both policies are defined but neither sets audit attempts.	cifs.audit.file_access_ events.enable off
Audit directory service access Audit object access	Both policies are defined, and audit attempts are set to Success, Failure, or Success & Failure	cifs.audit.enable on cifs.audit.file_access_ events.enable on

Policy name	Setting	Data ONTAP options
Other Audit policies and settings.	No mapping action is performed.	

Glossary

The following terms are frequently used in the context of file access and protocols management.

ACL Access control list. A list that contains the users' or groups' access rights to

each share.

adapter card A SCSI card, network card, hot swap adapter card, serial adapter card, or

VGA adapter that plugs into an expansion slot.

address resolution The procedure for determining a Media Access Control (MAC) address

corresponding to the address of a LAN or WAN destination

administration host The client you specify during system setup for managing your storage

system. The setup program automatically configures the storage system to accept telnet and rsh connections from this client, to give permission to this client for mounting the / and /home directories, and to use this client as the mail host for sending AutoSupport email messages. At any time after you run the setup program, you can configure the storage system to work with other clients in the same way as it does with the administration host.

agent A Data ONTAP process that gathers status and diagnostic information and

forwards it to NMSs.

appliance A device that performs a well-defined function and is easy to install and

operate.

ATM Asynchronous Transfer Mode. A network technology that combines the

features of cell-switching and multiplexing to offer reliable and efficient network services. ATM provides an interface between devices such as

workstations and routers, and the network.

authentication A security step performed by a domain controller for the storage system's

domain, or by the storage system itself, using its /etc/passwd file.

AutoSupport A storage system daemon that triggers email messages from the customer

site to technical support or another specified email recipient when there is a

potential storage system problem.

big-endian A binary data format for storage and transmission in which the most

significant bit or byte comes first.

CIFS Common Internet File System. A protocol for networking PCs.

client A computer that shares files on a storage system.

cluster interconnect Cables and adapters with which the two storage systems in an HA

configuration are connected and over which heartbeat and WAFL log

information are transmitted when both systems are running.

Software that administers the relationship of storage systems in the HA cluster monitor

configuration through the cf command.

A name used as a password by the SNMP manager to communicate with the community

storage system agent.

A terminal that is attached to a storage system's serial port and is used to console

monitor and manage storage system operation.

The technique for creating Snapshot copies without consuming excess disk copy-on-write

space.

The operating mode of storage systems when a disk is missing from the degraded mode

RAID array or the batteries on the NVRAM card are low.

disk ID number A number assigned by the storage system to each disk when it probes the

disks at boot time.

disk shelf A shelf that contains disk drives and is attached to the storage system.

emulated storage

system

A software copy of the failed storage system that is hosted by the takeover

storage system. The emulated storage system appears to users and administrators like a functional version of the failed storage system. For

example, it has the same name as the failed storage system.

An Ethernet interface card Ethernet adapter

A SCSI card, NVRAM card, network card, hot swap card, or console card expansion card

that plugs into a storage system expansion slot.

expansion slot The slots on the system board in which you insert expansion cards.

failed storage

system

The physical storage system that has ceased operating. It remains the failed

storage system until giveback succeeds.

FDDI adapter A Fiber Distributed Data Interface (FDDI) interface card.

FDDI-fiber An FDDI adapter that supports a fiber-optic cable.

FDDI-TP An FDDI adapter that supports a twisted-pair cable.

FPolicy Data ONTAP's proprietary file policy feature that provides the ability to

control access permissions based on file properties, such as file type.

Group ID. GID

giveback The return of identity from the virtual storage system to the failed storage

system, resulting in a return to normal operation; the reverse of takeover.

A group of users defined in the storage system's /etc/group file. group

HA configuration A pair of storage systems connected so that one system can detect when the

other is not working and, if so, can serve the failed system's data. In Data

ONTAP documentation and other information resources, high-availability (HA) configurations are sometimes also referred to as clusters or HA pairs.

heartbeat A repeating signal transmitted from one storage system to another that

indicates that the system is in operation. Heartbeat information is also stored

on disk.

hot spare disk A disk installed in storage systems that can be used to substitute for a failed

disk. Before the disk failure, the hot spare disk is not part of the RAID disk

array.

hot swap The process of adding, removing, or replacing a disk while storage systems

are running.

hot swap adapter An expansion card that makes it possible to add or remove a hard disk with

minimal interruption to file system activity.

inode A data structure containing information about files on a storage system and

in a UNIX file system.

interrupt switch A switch on some storage system front panels used for debugging purposes.

LAN Emulation (LANE)

The architecture, protocols, and services that create an Emulated LAN using ATM as an underlying network topology. LANE enables ATM-connected

end systems to communicate with other LAN-based systems.

local storage system The storage system you are logged in to.

magic directory A directory that can be accessed by name but does not show up in a directory

listing. The Snapshot copy directories, except for the one at the mount point

or at the root of the share, are magic directories.

mailbox disk One of a set of disks owned by each storage system that is used to store the

> HA configuration state information of the system. If that storage system stops operating, the takeover system uses the information in the mailbox disks in constructing a virtual storage system. Mailbox disks are also used as

file system disks.

The client host responsible for sending automatic email to technical support mail host

when certain storage system events occur.

An option when booting a storage system from a system boot disk. maintenance mode

Maintenance mode provides special commands for troubleshooting hardware

and configuration.

MIB Management Information Base. An ASCII file that describes the information

that the agent forwards to NMSs.

MIME Multipurpose Internet Mail Extensions. A specification that defines the

> mechanisms for specifying and describing the format of Internet message bodies. An HTTP response containing the MIME Content-Type header

~	4	•
- 4	⁄ 1	×

allows the HTTP client to start the application that is appropriate for the data

received.

MultiStore An optional storage system software product that enables you to partition the

storage and network resources of a single storage system so that it appears as

multiple storage systems on the network.

NDMP Network Data Management Protocol. A protocol that allows storage systems

to communicate with backup applications, and provides capabilities for

controlling the robotics of multiple tape backup devices.

network adapter An Ethernet, FDDI, or Asynchronous Transfer Mode (ATM) adapter.

network

management station

See NMS.

NMS Network Management Station. A host on a network that uses third-party

network management application (SNMP manager) to process status and

diagnostic information about a storage system.

normal mode The state of storage systems when there is no takeover in the HA

configuration.

null user The Windows NT machine account used by applications to access remote

data.

NVRAM cache Nonvolatile RAM in storage systems, used for logging incoming write data

and NFS requests. Improves system performance and prevents loss of data in

case of a storage system or power failure.

NVRAM card An adapter card that contains the storage system's NVRAM cache.

NVRAM mirror A synchronously updated copy of the contents of storage system NVRAM

(Nonvolatile Random Access Memory) contents kept on the partner storage

system.

panic A serious error condition causing the storage system to halt. Similar to a

software crash in the Windows system environment.

parity disk The disk on which parity information is stored for the RAID-4 disk drive

array. Used to reconstruct data in failed disk blocks or on a failed disk.

partner From the point of view of the local storage system, the other storage system

in the HA configurationn.

partner mode The method you use to communicate through the command-line interface

with the virtual storage system during a takeover.

PCI Peripheral Component Interconnect. The bus architecture used in newer

storage system models.

pcnfsd A storage system daemon that permits PCs to mount storage system file

systems. The corresponding PC client software is called PC-NFS.

PDC Primary Domain Controller. The domain controller that has negotiated to be,

or has been assigned as, the primary authentication server for the domain.

POST Power-on self-tests. The tests run by storage systems after the power is

turned on.

PVC Permanent Virtual Circuit. A link with a static route defined in advance,

usually by manual setup.

qtree A special subdirectory of the root of a volume that acts as a virtual

subvolume with special attributes.

RAID Redundant array of independent disks. A technique that protects against disk

failure by computing parity information based on the contents of all the disks in the array. Storage systems use RAID Level 4, which stores all parity

information on a single disk.

RAID disk scrubbing

The process in which the system reads each disk in the RAID group and tries

to fix media errors by rewriting the data to another disk area.

SCSI adapter An expansion card that supports the SCSI disk drives and tape drives.

SCSI address

The full address of a disk, consisting of the disk's SCSI adapter number and

the disk's SCSI ID; for example, 9a.1.

SCSI ID The number of a disk drive on the SCSI chain (0 to 6).

serial adapter An expansion card for attaching a terminal as the console on some storage

system models.

serial console An ASCII or ANSI terminal attached to a storage system's serial port. Used

to monitor and manage storage system operations.

share A directory or directory structure on the storage system that has been made

available to network users and can be mapped to a drive letter on a CIFS

client.

SID Security ID

Snapshot copy An online, read-only copy of the entire file system that protects against

accidental deletions or modifications of files without duplicating file contents. Snapshot copies enable users to restore files and to back up the

storage system to tape while the system is in use.

SVC Switched Virtual Circuit. A connection established through signaling. The

user defines the endpoints when the call is initiated.

system board A printed circuit board that contains the storage system's CPU, expansion

bus slots, and system memory.

The emulation of the failed storage system identity by the takeover storage takeover

system in an HA configuration; the reverse of giveback.

takeover storage

system

A storage system that remains in operation after the other storage system stops working and that hosts a virtual storage system that manages access to the failed storage system disk shelves and network connections. The takeover storage system maintains its own identity and the virtual storage system maintains the failed storage system identity.

takeover mode The method you use to interact with a storage system while it has taken over

its partner. The console prompt indicates when the storage system is in

takeover mode.

An asynchronous, unsolicited message sent by an SNMP agent to an SNMP trap

manager indicating that an event has occurred on the storage system.

A type of disk quota that restricts the disk usage of a directory created by the tree quota

quota qtree command. Different from user and group quotas that restrict disk

usage by files with a given UID or GID.

UID User ID.

A 16-bit character set standard. It was designed and is maintained by the Unicode

nonprofit consortium Unicode Inc.

VCI Virtual Channel Identifier. A unique numerical tag defined by a 16-bit field

in the ATM cell header that identifies a virtual channel over which the cell is

to travel.

vFiler unit A virtual storage system you create using MultiStore, which enables you to

partition the storage and network resources of a single storage system so that

it appears as multiple storage systems on the network.

VGA adapter An expansion card for attaching a VGA terminal as the console.

A file system. volume

VPI Virtual Path Identifier. An eight-bit field in the ATM cell header that

indicates the virtual path over which the cell should be routed.

WAFL Write Anywhere File Layout. The WAFL file system was designed for

storage systems running Data ONTAP to optimize write performance.

Windows Internet Name Service. WINS

A collection of computers running Windows NT or Windows for workgroup

Workgroups that is grouped for browsing and sharing.

Index

/etc/ad directory 122	A
/etc/cifs nbalias.cfg	access
creating NetBIOS aliases in 135	FTP, restricting 303
/etc/exports	why allowed or denied 149
editing 22	access cache
/etc/httpd.access	
editing 324	adding entries 29 explained 28
/etc/httpd.groupcreating and editing 326	
/etc/httpd.passwd	optimizing performance 30
creating and editing 326	removing entries 29
/etc/httpd.translation	setting timeout values 31
adding fail rules 319	viewing statistics 30
/etc/httpd.translations	access control
adding map rules 318	troubleshooting 146
adding pass rules 319	access control lists (ACLs)
adding redirect rules 318	compatibility between NFSv4 and NTFS 48
defined 317	file-level, displaying and changing 97
/etc/log/ftp.cmd	managing 90
log file format 306	NFSv4 47
/etc/log/ftp.xfer	NFSv4, benefits of enabling 48
log file format 306	NFSv4, enabling or disabling 48
/etc/log/httpd.log	NFSv4, managing 46
changing format 331	NFSv4, setting or modifying 49
/etc/nsswitch.conf	NFSv4, viewing 49
	share-level, adding users or groups from MMC 91
adding LDAP entry 250	share-level, changing from CLI 95
enabling LDAP client authentication 253	share-level, defined 90
/etc/symlink.translations	share-level, displaying and changing 91
creating map entries 287	share-level, displaying and changing from MMC
creating widelink entries 288	93
map entries 285	share-level, removing users or groups using CLI 96
redirecting absolute symbolic links 287	share-level, removing users or groups using MMC
using map and widelink entries 289	95
widelink entries 285	share-level, specifying group IDs 99
/etc/usermap.cfg	access-based enumeration
direction 235	defined 88
increasing security 239	enabling or disabling 88
interpreting domain names 236	executing commands from Windows clients 89
IP qualifier 234	accounts
mapping user names 238	local users, adding, displaying and removing 111
mapping Windows accounts to root 239	local users, limitations of 110
restricting NFS access 239	machine, preventing data access 134
sample entries 237	machine, using for access in Kerberos
specifying entries 233	environments 134
UNIX name 236	ACL permissions
Windows name 235	NFSv3/v4 clients, displaying 96
	, 1 5 0

ACLs (access control lists)	defined 265
compatibility between NFSv4 and NTFS 48	displaying events 279, 280
file-level, displaying and changing 97	enabling automatic saves by time interval 276
managing 90	event log location 273
NFSv4 47	failed access attempts 282
NFSv4, benefits of enabling 48	lost record events 282
NFSv4, enabling or disabling 48	NFS, configuring 270
NFSv4, managing 46	NFS, controlling events with filter file 271
NFSv4, setting or modifying 49	NFS, enabling 271
NFSv4, viewing 49	NFS, specifying events 270
share-level, adding users or groups from MMC 91	saving events 273
share-level, changing from CLI 95	saving events manually 274
share-level, defined 90	SNMP traps for events 279
share-level, displaying and changing 91	specifying log counter extensions 277
share-level, displaying and changing from MMC	specifying log timestamp extensions 277
93	specifying maximum auto save files 278
share-level, removing users or groups using CLI 96	specifying maximum size of internal audit log file
share-level, removing users or groups using MMC	278
95	UNIX file access details 282
share-level, specifying group IDs 99	updating event logs 273
Active Directory	viewing events 280
LDAP lookup services, enabling 256	viewing static event logs 281
LDAP servers, connection pooling and selection	Windows file access details 281
258	authentication
LDAP servers, managing 255	FTP, specifying 301
LDAP servers, monitoring connections 257	HTTP 322
LDAP servers, requirements 256	Kerberos 127
LDAP servers, troubleshooting connections 257	managing for clients 253
LDAP servers, using 256	method, displaying 110
simple binds 258	NTLM, limitations of 302
adding	UNIX 126
HTTP fail rules 319	UNIX client, enabling for LDAP 253
HTTP map rules 318	Windows client, enabling for LDAP 253
HTTP pass rules 319	Windows workgroup 126
HTTP redirect rules 318	authorization
mapping entries to WAFL credential cache 292	managing for clients 253
aliases	
NetBIOS, creating 135	_
NetBIOS, creating from CLI 135	В
NetBIOS, creating in /etc/cifs_nbalias.cfg 135	1 1 1 1
NetBIOS, displaying 136	boundary checking
audit policies	enabling or disabling for symbolic links from
mapping 341	shares 84
mapping values 342	browsing
auditing	enabling or disabling 86
CIFS, configuring 269	
clearing events 273	C
clearing events 275 clearing internal audit log file 279	
configuring automatic saves 275	caching
configuring automatic saves by log file size 275	enabling or disabling 87
configuring automatic suves by fog the size 275	setting client-side properties 88

character mapping	Widelink entries 288		
clearing from volumes 229	credential cache		
character restrictions	WAFL, adding mapping entries to 292		
for file names 229	WAFL, deleting mapping entries from 292		
character translation	WAFL, monitoring statistics 294		
enabling for file names 228	credentials		
CIFS	UNIX, managing for CIFS clients 231		
auditing, configuring 269	UNIX, obtaining for CIFS users 232		
client events 170	UNIX, specifying CIFS users 233		
clients, optimizing NFS directory access 289			
configuring 62	D		
configuring shutdown messages 143			
considerations when reconfiguring 68	deleting		
controlling access to symbolic links 283	files with the read-only bit set 231		
disabling 142	servers from the prefdc list 130		
enabling clients to follow symbolic links 284	shares from the CLI 90		
file locking 230	descriptions		
file names 225	displaying and changing 144		
file sharing with NFS 225	directories		
files, accessing from NFS clients 291	converting to Unicode format 290		
giving clients permission to run .dll and .exe files	creating Unicode-formatted 290		
297	displaying security settings for 264		
limiting simultaneous screening 167	FTP, restricting users 304		
monitored events 160	matching with a user 101		
monitoring activity 137	specifying permissions for newly created 85		
preventing clients from creating uppercase file	directory access		
names 291	NFS, optimizing for CIFS clients 289		
read-only bits 230	directory create operations		
reconfiguring 69	configuring FPolicy to monitor 186, 187		
resource limitations 140	directory create request monitoring		
resource limits by system memory 337–339	defined 186		
restarting service 143	directory create requests		
setup 63	registering FPolicy to monitor 187		
specifying how clients interact with symbolic links	directory delete operations		
284	configuring FPolicy to monitor 184		
stopping server screening for disconnected requests	directory delete request monitoring		
166	defined 183		
tracing logins 296	directory delete requests		
CLI	registering FPolicy to monitor 184		
fpolicy ext 200–203	directory events 171		
clients	directory operations 171		
disconnecting using MMC 141	directory rename operations		
managing authentication and authorization 253	configuring FPolicy to monitor 185		
Windows, supported 62	directory rename request monitoring		
configuring	defined 185		
HTTP MIME types 316	directory rename requests		
creating	registering FPolicy to monitor 186		
CIFS shares from CLI 79	disabling		
directories in a home directory path 106	CIFS 142		
map entries 287	fencing 26		
	<u> </u>		

FPolicy 162	SSL for LDAP 249
FTP server 299	TFTP server 300
NFSv3 42	enforcing
NFSv4 46	SMB 2.0 signing 76
SMB 2.0 73	enumeration
SMB 2.0 clients 77	access-based, defined 88
SMB 2.0 durable handles 74	access-based, enabling or disabling 88
SSL for LDAP 249	access-based, executing commands from Windows
TFTP server 300	clients 89
disconnecting	error messages
clients using the MMC 141	FPolicy 215
users from CLI 141	event log
displaying	external, specifying location 274
export options for file system paths 27	event logs
file system paths 27	mapping 341
Group Policy Objects (GPOs) 120	mapping values 341
HTTP statistics 327	updating 273
NFS statistics 42	events
permission tracing filters 148	audit, saving and clearing 273
preferred domain controllers and LDAP servers	auditable 266
131	monitored through CIFS 160
domain controllers	monitored through NFS 161
tracing connections 296	saving manually to audit event log 274
Windows, supported 62	screened for NFS and CIFS clients 170
domains	system access, auditing 265
changing 64	system, configuring auditing 267
displaying preferred controllers 131	export options
reestablishing connection with 132	displaying for file system paths 27
selecting controllers 128	exporting
specifying preferred controllers 130	file system paths 23, 24
troubleshooting controller connections 131	extensions
understanding the controller discovery process 129 dot files	adding to exclude list 201 adding to include list 200
displaying on CIFS clients 227 durable handles	adding to include or exclude list 200
	displaying 199
SMB 2.0, timeout of 74	displaying exclude list 200
SMB v2.0, enabling or disabling 74	displaying include list 199
	removing from exclude list 202
E	removing from include list 201
	removing from include or exclude list 201
enabling	resetting include list 203
fencing 26	resetting include or exclude list 203
file name character translation 228	resetting the exclude list 203
FPolicy 162	screening with wildcards 199
FTP server 299	setting exclude list 203
NFSv3 42	setting include list 202
NFSv4 46	setting or replacing include or exclude list 202
SMB 2.0 73	
SMB 2.0 clients 77	

SMB 2.0 durable handles 74

F	file open requests
	registering FPolicy to monitor 173
fencing	file operations 171
enabling or disabling 26	file policies
file close operations	creating 163
configuring FPolicy to monitor 175	destroying 166
file close request monitoring	disabling 166
defined 174	displaying information 165
file close requests	enabling 164
registering FPolicy for monitoring 175	file read operations
file create operations	configuring FPolicy to monitor 180
configuring FPolicy to monitor 173, 174	registering FPolicy to monitor 181
file create requests	file read request monitoring
registering FPolicy to monitor 174	defined 180
file delete operations	file rename operations
configuring FPolicy to monitor 177, 178	configuring FPolicy to monitor 176
file delete request monitoring	file rename request monitoring
defined 177	defined 176
file delete requests	file rename requests
registering FPolicy to monitor 178	registering FPolicy to monitor 177
file events 171	file request monitoring
file link operations	defined 173
configuring FPolicy to monitor 181, 182	file screening
file link requests	disabling server connection 204
registering FPolicy to monitor 182	displaying server information 204
file locking	specifying 164
explained 230	file screening server
file lookup operations	managing 204
configuring FPolicy to monitor 188	file sharing
file lookup request monitoring	between NFS and CIFS 225
defined 187	file symlink operations
file lookup requests	configuring FPolicy to monitor 183
registering FPolicy to monitor 188	file symlink requests
file management	registering FPolicy to monitor 183
using Windows administrative tools 145	file system controls
file names	SMB v2.0 72
case-sensitivity 226	File System ID (FSID) 43
character restrictions 229	file system paths
creating 227	displaying 27
creating in lowercase 226	displaying export options 27
enabling character translation 228	enabling or disabling fencing 26
for NFS and CIFS 225	exporting 23, 24
length 226	exporting or unexporting 21
preventing CIFS clients from creating uppercase	synchronizing 26
291	unexporting 24, 25
valid characters 226	file write operations
file open operations	configuring FPolicy to monitor 179
configuring FPolicy to monitor 172	file write request monitoring
file open request monitoring	defined 178
defined 171	file write requests

registering FPolicy to monitor 179	FPolicy, performance 212, 213
files	fsecurity
accessing over FTP 299	creating and applying security jobs 263
accessing over HTTP 313	defined 260
accessing over WebDAV 333	enabling Storage-Level Access Guard 260
audit, access details 281, 282	FSID (File System ID) 43
avoiding symbolic links 285	FTP
displaying security settings for 264	accessing files 299
failed access attempts 282	anonymous access, enabling or disabling 311
lost record events 282	authentication style, specifying 301
specifying permissions for newly created 85	blocking users 303
filter file	bypassing traverse checking, enabling or disabling
controlling NFS audit events 271	302
firewall	file locking, enabling or disabling 300
virtual HTTP, using 322	managing 299
forcegroup option	managing anonymous access 311
defined 80	managing log files 305
FPolicy	
	resetting statistics 309
about 150	restricting access 303
adding operations to monitor 206	restricting users 304
assigning secondary servers 205	server, enabling or disabling 299
CLI commands 208	setting connection threshold 310
communicating with the storage environment 155	SNMP traps generated 308
defined 150	specifying anonymous user name 312
enabling or disabling 162	specifying home directory for anonymous users
error messages 215	312
Frequently asked questions 210	specifying idle timeout 311
Frequently asked questions, access 212	specifying maximum number of connections 309
Frequently asked questions, file screening 213, 214	specifying maximum number of log files 307
Frequently asked questions, general 210–212	specifying maximum size of log files 307
Frequently asked questions, performance 212, 213	specifying TCP window size 310
Frequently asked questions, server 215	viewing log files 306
introduction 150	viewing SNMP traps 307
limitations 156	viewing statistics 309
limiting number of screened CIFS requests 167	
monitoring operations 206, 208	C
registering to monitor file create requests 174	G
removing operations to monitor 207	get attributes operations
removing secondary servers 206	
secondary servers, defined 205	configuring FPolicy to monitor 189 get attributes request monitoring
setting up 162	defined 188
using 151, 162	
warning messages 219	get attributes requests
work flowchart 153	registering FPolicy to monitor 189
Frequently asked questions	GIDs
FPolicy 210	mapping UNIX user names 240
FPolicy server 215	glossary 345
FPolicy, access 212	GPOs (Group Policy Objects)
FPolicy, file screening 213, 214	applying 114
FPolicy, general 210–212	creating file system security 116
11 oney, general 210–212	displaying 120

enabling or disabling support for 115 managing 116 requirements for using 115 troubleshooting update problems 121 updating settings 120 Group Policy Objects (GPOs) applying 114 creating file system security 116 displaying 120 enabling or disabling support for 115 event logs and audit policies mapping 341 managing 116 requirements for using 115 troubleshooting update problems 121 updating settings 120 groups local, adding from MMC 112 local, adding, displaying, and removing from CLI 111 local, managing 111 local, removing using MMC 113 local, working with SnapMirror 113	changing /etc/log/httpd.log format 331 configuring MIME types 316 configuring requests 317 configuring virtual hosting 327 creating and editing /etc/httpd.group 326 creating and editing /etc/httpd.passwd 326 detailed statistics 329 displaying statistics 327 editing /etc/httpd.access 324 error statistics 329 file access 313 maintaining security 321 NTLM authentication 323 request statistics 328 resetting statistics 330 restricting access 321 service statistics 329 specifying maximum log file size 315 specifying root directory 315 testing server 315 timeout statistics 330 translations file 317 using a virtual firewall 322 using third-party server 332 viewing connection information 330
home directories CIFS, accessing using share aliases 108 creating directories in 105, 106 creating subdirectories when using extensions 106 defined 101 disabling 109 displaying paths 104 enabling access from other users 107 managing 100 specifying naming style 104 specifying paths 103 specifying using UNC, syntax 107 WebDAV, accessing 335 HTTP adding fail rules 319 adding map rules 318 adding pass rules 319 adding redirect rules 318 authentication 322 basic authentication 323 built-in server, enabling or disabling 313 bypassing of traverse checking, enabling or disabling 314	idle sessions, timing out 138 idle timeout FTP, specifying 311 J job definition file for Storage-Level Access Guard, generating and editing 261 managing with secedit utility 261 managing with text editor 262 specifying elements 262 K Kerberos authentication 127 configuring for NFS 32, 33, 35 enabling 31 enabling for NFS 38

NFS clients supporting v5 security services 40	limitations
preventing passive replay attacks 128	CIFS resources 140
using machine accounts for access 134	of local user accounts 110
keytab file	link operations
generating 36	configuring FPolicy to monitor 181, 182
keywords	link requests
screening operations 223	monitoring 181
•	Live View
Ŧ	configuring 272
L	displaying audit events 280
LDAP	displaying events 279
	viewing events 280
Active Directory lookup services, enabling 256	locking grace period
Active Directory servers, connection pooling and	NFSv4, specifying 54
selection 258	locking lease period
Active Directory servers, managing 255	NFSv4, specifying 54
Active Directory servers, monitoring connections	log
257	external event, specifying location 274
Active Directory servers, requirements 256	log files
Active Directory servers, troubleshooting	FTP, managing 305
connections 257	FTP, managing 503 FTP, specifying maximum number of 307
Active directory servers, using 256	
adding entry to /etc/nsswitch.conf 250	FTP, specifying maximum size of 307
configuring 246	FTP, viewing 306
default schema 259	HTTP, specifying maximum size of 315
displaying preferred servers 131	size and format 273
enabling authorization for NFS file access from	logins
Windows clients 253	CIFS, tracing 296
enabling authorization for NTFS or mixed file	
system access from UNIX clients 254	\mathbf{M}
enabling or disabling 249	112
enabling or disabling SSL 249	machine accounts
enabling UNIX client authentication 253	preventing data access 134
enabling Windows client authentication 253	using for access in Kerberos environments 134
installing SSL root certificate 250	map cache
managing schema 258	SID-to-name, clearing 244
mapping users 254	SID-to-name, enabling or disabling 244
modifying schema options 259	SID-to-name, managing 243
selecting servers 128	map entries
server selection order 252	creating 287
setting administrative password 251	defined 285
simple binds 258	using 289
specifying administrative user names 251	mapping
specifying base and scope values 247	managing inconsistencies 295
specifying ports 252	users with LDAP 254
specifying preferred servers 130, 248	mapping entries
specifying search base and scope 247	adding to WAFL credential cache 292
specifying servers 248	configuring valid time 293
user mapping, specifying base and scope values	deleting from WAFL credential cache 292
255	SID-to-name, changing lifetime of 244
using 245	messages

sending to users 143	displaying aliases 136
MIME types	over TCP, disabling 136
configuring 320	NFS
HTTP, configuring 316	auditing, configuring 270
MMC	auditing, enabling 271
adding users or groups to share-level ACLs 91	benefits of enabling v4 ACLs 48
adding users to local group 112	client events 170
connecting to storage system 61	clients supporting Kerberos v5 security services 40
deleting shares 89	clients, accessing CIFS files 291
disconnecting clients 141	compatibility between v4 and NTFS ACLs 48
displaying and changing share properties 81	configuring Kerberos 32, 33, 35
displaying and changing share-level ACLs 93	controlling audit events 271
removing local groups 113	displaying open delegation statistics, v4 52, 53
removing users or groups from share-level ACLs	displaying statistics 42
95	enabling Kerberos 31, 38
running the Share a Folder wizard 79	enabling or disabling v3 42
monitor list	enabling or disabling v4 46
adding operations 206	enabling or disabling v4 ACLs 48
removing operations 207	enabling or disabling v4 write open delegations 51
monitoring	file access from Windows clients, enabling LDAP
WAFL credential cache statistics 294	authorization 253
mount service statistics	file locking 230
displaying 41	file names 225
mountd requests	file sharing with CIFS 225
tracing 41	limitations of v4 support 44
mounting problems	managing v4 ACLs 46
debugging 40	monitored events 161
mountpoints	optimizing directory access for CIFS clients 289
affected by NFSv4 pseudo-fs 45	pseudo-fs affecting mountpoints 45
multiple server configuration	read-only bits 230
defined 155	restricting user access 239
multiprotocol	setting or modifying, v4 ACLs 49
changing, effects of 67	specifying audit events 270
	specifying user ID domain for v4 46
N.T.	supporting v4 clients 43
N	v3/v4 clients, displaying Windows ACL
nome comice database	permissions 96
name server database	v4 ACLs 47
flushing cache 55	v4, determining file deletion 48
naming styles domain 105	v4, displaying open delegation statistics 52, 53
	v4, enabling or disabling read open delegations 50
non-domain 106	v4, managing open delegations 50
specifying for home directories 104	v4, open delegations 50
native file blocking	v4, specifying locking grace period 54
configuring 158	v4, specifying locking lease period 54
defined 157	viewing v4 ACLs 49
using 158	NFS clients
NetBIOS	enabling or disabling fencing 26
creating aliases 135	NTFS
creating aliases from CLI 135	ACLs, compatibility with NFSv4 48
creating anases in /eic/cits inpallas cig 135	,

NTLM	permissions
authentication, limitations of 302	adding tracing filters 146
NTLM authentication	displaying tracing filters 148
HTTP 323	removing tracing filters 147
null sessions	specifying for newly created files and directories
providing access 133	85
using for access in non-Kerberos environments 132	ports
null users	specifying for LDAP 252
granting access to shares 133	principals
0	creating 36
0	protocol modes
ONTAPI 150	changing 66
open delegation statistics	pseudo-fs
displaying, NFSv4 52, 53	NFSv4, affecting mountpoints 45
NFSv4, displaying 52, 53	
open delegations	0
NFSv4 50	Q
NFSv4, managing 50	qtrees
operations	enabling or disabling oplocks 124
adding to monitor list 206	queries
removing from monitor list 207	statistics, saving and reusing 140
setting or replacing list of monitored 208	statistics, saving and reusing 140
oplocks	
changing delay time for sending breaks 124	R
enabling or disabling 123	
enabling or disabling on qtrees 124	read open delegations
improving client performance with 122	NFSv4, enabling or disabling 50
write cache data loss considerations 123	read-only bits
optimizing	deleting files 231
access cache performance 30	explained 230
organizational units (OUs)	Remote Procedure Calls (RPC) 150
associating with 115	removing
OUs (organizational units)	entries from access cache 29
associating with 115	Storage-Level Access Guards 265
-	resetting
P	HTTP statistics 330
passwords	resource limits
administrative, setting for LDAP 251	CIFS, by system memory 337–339
changing 144	resources
path names	CIFS, limitations 140
configuration requirements 122	restricting
PC-NFS	FTP users to directories 304
creating user entries 57	restrictions
defining umask for files and directories 58	authentication-based 19
supporting clients 56	file-based 19
penfsd daemon	root directory
enabling or disabling 56	enabling for WebNFS 60
explained 56	HTTP, specifying 315
performance	setting for WebNFS 59
client, improving with oplocks 122	specifying name for WebNFS 59
optimizing for access cache 30	RPC (Remote Procedure Calls) 150

S	disabling for symbolic links 286
	shares
SACLs (System access control lists)	changing properties from CLI 83
setting 268	creating 78
screening	creating from CLI 79
by extension, defined 197	creating from MMC on Windows clients 79
by volume, defined 191	deleting 89
using wildcards 192, 199	deleting from CLI 90
screening operations	deleting from MMC 89
keywords 223	displaying and changing properties 81
screening timeout	displaying and changing properties from MMC 81
setting 169	displaying properties from CLI 82
scripts	naming conventions 79
startup, shutdown 122	shutdown messages
secedit utility	configuring for CIFS 143
managing job definition file with 261	SID-to-name map cache
secondary servers	clearing 244
assigning 205	enabling or disabling 244
defined 205	managing 243
removing 206	SID-to-name mapping entries
security	changing lifetime of 244
HTTP, maintaining 321	simple binds
increasing for user access 239	Active Directory, LDAP 258
security jobs	SMB
applying to storage objects 263	configuring 70
canceling 264	signing 74
checking status of 264	signing policies affecting communications 75
creating from job definition file 263	signing, performance impact of 76
security level	support for v1.0 70
setting the minimum 127	support for v2.0 71
security settings	
displaying for files and directories 264	v1.0, enforcing signing 76 v2.0, client enabling or disabling 77
	v2.0, chefit enabling of disability 77 v2.0, durable handle timeout 74
server screening	
stopping for disconnected CIFS requests 166	v2.0, durable handles, enabling or disabling 74
server timeout	v2.0, enabling or disabling 73
setting 168	v2.0, enforcing signing 76
servers	v2.0, file system controls 72
connection pooling and selection 258	v2.0, support for create contexts 72
deleting from prefdc list 130	v2.0, when to enable 73
LDAP, selection order 252	SMB named pipe
sessions	enabling or disabling multiple open instances 169
displaying information 138	SnapMirror
idle, timing out 138	working with local groups 113
set attributes operations	SNMP
configuring FPolicy to monitor 190, 191	configuring 308
set attributes request monitoring	FTP, traps generated 308
defined 190	FTP, viewing traps 307
set attributes requests	starting 308
registering FPolicy to monitor 191	traps for auditing events 279
share boundary checking	viewing traps on UNIX clients 308

specifying	symlink requests
FTP authentication style 301	registering FPolicy to monitor 183
FTP idle timeout 311	synchronizing
home directory for anonymous FTP users 312	file system paths 26
home directory paths 103	System access control lists (SACLs)
HTTP server root directory 315	setting 268
LDAP administrative password 251	system access events
LDAP administrative user names 251	auditing 265
LDAP search base and scope 247	system event auditing
LDAP server port 252	configuring 267
maximum number of auto save files 278	
maximum number of FTP log files 307	Т
maximum size of cifsaudit.alf file 278	1
maximum size of FTP log files 307	TCP window size
maximum size of HTTP log files 315	FTP, specifying 310
preferred domain controllers and LDAP servers	TFTP
130	server, enabling or disabling 300
preferred LDAP servers 248	specifying maximum number of connections 310
SSL	timeout
enabling or disabling for LDAP 249	SMB 2.0 durable handle timeout 74
installing root certificate for LDAP 250	timeout values
statistics	
FTP, resetting 309	setting for access cache 31
FTP, viewing 309	timing out
HTTP, displaying 327	idle sessions 138
monitoring WAFL credential cache 294	tracing filters
NFS, displaying 42	adding for permissions 146
saving and reusing queries 140	displaying for permissions 148
tracking 138	removing for permissions 147
viewing 139	traps
viewing for access cache 30	SNMP, for auditing events 279
Storage-Level Access Guard	
enabling 260	U
generating and editing job definition file 261	
Storage-Level Access Guards	UIDs
removing 265	mapping UNIX user names 240
symbolic links	umask
absolute, redirecting 287	defining for files and directories of PC-NFS users
avoiding 285	58
controlling CIFS access to 283	explained 57
disabling share boundary checking 286	unexporting
enabling CIFS clients to follow 284	file system paths 25
enabling or disabling boundary checking for 84	Unicode
specifying how CIFS clients interact with 284	converting directories 290
	formatted, creating directories 290
wide, enabling or disabling 84, 108	UNIX
with home directories 102	authentication 126
symlink operations	credentials, managing for CIFS clients 231
configuring FPolicy to monitor 183	credentials, obtaining for CIFS users 232
symlink request monitoring	credentials, specifying for CIFS users 233
defined 182	

enabling LDAP authorization for NTFS or mixed file system access 254 enabling or disabling default user accounts 241 file access details 282 LDAP-based client authentication, enabling 253 mapping user names to UIDs and GIDs 240 viewing SNMP traps 308	removing from include or exclude list 195 resetting exclude list 197 resetting include list 197 screening with wildcards 192 setting exclude list 196 setting include list 196 specifying or replacing in include or exclude list
user account names Windows, specifying 67	197
user accounts enabling or disabling Windows guest 242	W
UNIX, enabling or disabling 241	WAFL
user ID domain	credential cache, adding mapping entries to 292
specifying for NFSv4 46	credential cache, deleting mapping entries from
user mapping	292
LDAP, specifying base and scope values 255	credential cache, monitoring statistics 294
user names	warning messages
administrative, specifying for LDAP 251	FPolicy 219
mapping 238	WebDAV
translating between Windows and UNIX 233	accessing home directories 335
UNIX, mapping to UIDs and GIDs 240	enabling or disabling 334
users	explained 333
administrative, enabling centralized administration	file access 333
251	managing 334
disconnecting from CLI 141	using third-party server 335
FTP, blocking 303	WebNFS
FTP, restricting 304	enabling or disabling 59
limitations of local accounts 110	enabling root directory 60
local, adding, displaying, and removing accounts	setting root directory 59
111	specifying name of root directory 59
local, managing 109	supporting clients 58
null, granting access to shares 133	widelink entries
restricting 304	creating 288
sending messages to 143	defined 285
specifying 137	using 289
	wildcards
\mathbf{V}	using for screening 192, 199
	Windows
virtual hosting configuring 327	enabling LDAP authorization for NFS file access 253
virus scanning	enabling or disabling guest user account 242
enabling or disabling 86	file access details 281
volumes	LDAP-based client authentication, enabling 253
adding to exclude list 194	specifying user account names 67
adding to include list 194	supported clients 62
adding to include or exclude list 194	supported domain controllers 62
clearing character mapping 229	workgroup authentication 126
displaying 193	WINS servers
removing from exclude list 195	specifying 64
removing from include list 195	write cache

364 | Data ONTAP 8.0 7-Mode File Access and Protocols Management Guide

data loss considerations when using oplocks 123 write open delegations

enabling or disabling, NFSv4 51